University of Missouri – Kansas City

Effective Date: January 1, 2006

Responsible Parties: All Employees and Students

Issued by: [Signature] Chancellor

Environmental Policy Statement

Purpose
This policy provides the University of Missouri-Kansas City with a cohesive statement of direction to align each element of Environmental Sustainability and Compliance into a single framework of cooperation and commitment.

Vision
UMKC embraces safety responsibility, pollution prevention, regulatory compliance, the minimization of occupational risk, and a continual effort to improve environmental conditions while empowering its stakeholders to meet or exceed the Federal, State, and Local regulatory agency standards by promoting best practice model attitudes, inspiration, and achievement.

Policy
- United Responsibility
 UMKC administrators, employees and students will conduct daily operations in a manner that safeguards themselves, coworkers, and the University Community from immediate or latent harm.

- Minimization of Waste Material and Energy Used
 UMKC will minimize waste generation through sound principles of material reduction, reuse, and recycling. Each facility will foster operating procedures designed to prevent the release of hazardous substances that may cause harm to people or the environment. Each facility will respond to the challenge to reduce the waste energy usage in all forms of environmental expenditure. Each facility will operate as efficiently as reasonable achievable.

- Knowledge Based Approach
 UMKC will encourage the University Community to be environmentally responsible by providing them with programs, drills, and training that incorporate aspects of learning and awareness. Periodic environmental, safety, and risk assessments will be performed at each facility identifying, prioritizing and recommending appropriate measures of improvement to management with impact review provided in a timely manner to responsible parties.

- Commitment to Sustained Health and Safety Conditions.
 UMKC is committed to providing safe and healthful working conditions and to preserve our human resources through the promotion and execution of workplace safety, security, risk reduction and environmental advancement. This commitment is manifest by knowledgeable Faculty, Staff, and Students dedicated to practicing proper safety principles.
DEPARTMENT OF ENVIRONMENTAL HEALTH AND SAFETY (EHS)

Administrative Division – 4747 Troost Bldg., Kansas City, MO 64110 235-5241
William Leutzinger, Director EHS Room 3A
Office- 235-1157, Cell- 816-616-6824, e-mail- leutzingerw@umkc.edu

Biological Safety Division 235-1844
Tim Sturgis, BioSafety Professional EHS Room 3B
Office- 235-1844, Pager- 913-226-0102, e-mail- sturgist@umkc.edu

Hazardous Materials Division 235-6697
Jason Boswell, Coordinator of Hazardous Materials Office- 235-6697, e-mail- boswellja@umkc.edu
EHS Room 23C

Todd Brier, Hazardous Materials Technician EHS Room 23B
Office- 235-5289, e-mail- briert@umkc.edu

Hazardous Waste Division 235-1642
Tony Brown, Sr. Environmental Chemist EHS Room 23D
Office- 235-1642, e-mail- brownjames@umkc.edu

Occupational Safety Division 235-1423
John McCall, Industrial Hygienist EHS Room 22A
Office- 235-6195, e-mail- mccalljd@umkc.edu

Jacob Gaughran, Fire Inspector III EHS Room 01
Office- 235-6095, e-mail- gaughranj@umkc.edu

Radiation Safety Division 235-6096
William Wright, Radiation Safety Officer, Health Physicist EHS Room 18
Office- 235-6096, e-mail- wrightwr@umkc.edu
UMKC CHEMICAL MANAGEMENT PLAN

This document constitutes the Chemical Management Plan (CMP) for the University of Missouri-Kansas City (UMKC). It was developed by the Environmental Health and Safety Department (EHS), to ensure the safe and proper use of hazardous and non-hazardous chemicals and to comply with applicable governmental regulations addressing the disposal of these chemicals. In addition, it was developed to foster waste minimization, and to provide the faculty and the staff with a management program to reduce the potential for accidents involving hazardous chemicals and/or wastes. Elements of the CMP include:

a. a procedure for identifying potential or actual hazardous chemicals or wastes

b. a procedure for periodic reexamination of those hazardous chemicals or wastes identified by the procedure in (a.) above as well as a systematic method for identification and evaluation of any new potential or actual hazardous chemicals or wastes

c. procedures for labeling, and inventorying hazardous chemicals or wastes

d. a procedure for identification and training of personnel directly responsible for ensuring that (a.), (b.), and (c.) are implemented

e. a procedure for monitoring, recording, and reporting compliance with the CMP

f. a procedure by which information generated by the CMP is provided to the persons performing waste analyses

Each element is addressed as part of the complete CMP in the following paragraphs.
Table of Contents

1 Definitions 7

2 **Identification of Hazardous Chemicals** 15
2.1 Identification and Inventory/Labeling System 15

3 **Hazardous Chemicals Management** 17
3.1 Chemical Purchase 17
3.2 Laboratory or Facility Management Responsibility 17
3.3 Hazardous Waste Chemicals 18
3.4 Damaged Containers 18
3.5 Empty Containers 19
3.6 Disposition – Hazardous Chemicals 19
3.7 Audits of Laboratories or Other Areas Generating Hazardous Waste 20

4 **Implementation of the Plan** 22
4.1 Administration 22
4.2 Personnel Training 23

5 **Monitoring and Compliance Reporting** 25
5.1 EHS Audits of Central Storage Areas and Laboratories 25

6 **RCRA Generator Responsibilities** 27
6.1 Chemical Storage and Disposal 27
6.2 Generator Status 27
6.3 Generator Requirements 27
6.3.1 Waste Characterization 27
6.3.2 Hazardous Waste Accumulation Requirements 28
6.3.3 Hazardous Waste Storage Requirements 29
6.3.4 SQG Storage Area 29
6.3.5 LQG Hazardous Waste Storage Area 29
6.3.6 Hazardous Waste Transporting/Disposal Requirements 30
6.3.7 Recordkeeping and Reporting Requirements 30
6.3.8 Contingency Plan 31
6.3.9 Employee Training 31

7 **Appendix A** 33
7.1 UMKC combined RCRA P List/U List/ California List/ DHS List/ Peroxide Forming Chemicals 34
7.2 Characteristics of Hazardous Wastes: Ignitability, Corrosivity, Reactivity, and Toxicity 71
7.3 Exempted Product Categories List 74
<table>
<thead>
<tr>
<th>8</th>
<th>Appendix B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Designation of Facility Supervisors and Room Updates Form</td>
<td>76</td>
</tr>
<tr>
<td>8.2</td>
<td>Hazardous Chemical Transfer Form</td>
<td>77</td>
</tr>
<tr>
<td>8.3</td>
<td>Hazardous Waste Request Form, Instructions</td>
<td>78</td>
</tr>
<tr>
<td>8.4</td>
<td>Hazardous Chemical Pick Up Form</td>
<td>82</td>
</tr>
<tr>
<td>8.5</td>
<td>Hazardous Waste Tag</td>
<td>85</td>
</tr>
<tr>
<td>8.6</td>
<td>Satellite Accumulation Label, Instructions</td>
<td>86</td>
</tr>
<tr>
<td>8.7</td>
<td>Adding & deleting chemicals from inventory, Instructions</td>
<td>98</td>
</tr>
<tr>
<td>8.8</td>
<td>Printing Bar Codes</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Appendix C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Chemical Management and Treatment Protocols</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Appendix D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Hazardous Waste Incompatibility List</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>OnSite Storage Requirements</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Campus Building Abbreviations and Addresses</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>Training Available to Personnel Handling Hazardous Waste</td>
<td></td>
</tr>
</tbody>
</table>
Definitions

Authorized Users List – a list to be posted in every lab that will provide the names of all Hazardous Material Managers, Hazardous Material Supervisors, and Hazardous Material Workers that are authorized to work in each specific area, and the date it was authorized.

Bar Code System (On-Site System/Environmental Health & Safety Assistant) - The computer program which maintains UMKC’s hazardous chemical inventory and which generates bar code labels and routine inventory reports. Every Hazardous Chemical must be registered in the inventory. An inventory label with a unique bar code number must be affixed to each inventoried container.

Central Storage Area - area where chemicals can be safely stored when not in continued use in a laboratory. Each Hazardous Materials Manager overseeing a Central Storage Area will maintain an inventory of chemicals contained therein. Each Hazardous Materials Supervisor will maintain an inventory of all chemicals in their designated laboratory.

Chemical Management and Treatment Protocols - protocols for management/treatment/disposal of specific chemicals, formulations, or residues from the same, based on generally accepted chemical hygiene practices, in compliance with RCRA requirements and submitted to, and approved by, Environmental Health and Safety. Approved protocols will become components of this CMP. Only those hazardous chemicals specifically addressed in these protocols may be treated by personnel other than Environmental Health and Safety. Treatment and subsequent disposal must follow the protocol exactly and the disposal method must be noted in the Bar Code System. (Example: neutralization of an acid with a base resulting in the formation of a non-hazardous solution and subsequent disposal via the sanitary sewer system.)

Chemical Storage Building (CSB) - the facility maintained by Environmental Health and Safety for the receipt and storage of designated hazardous (and some non-hazardous) wastes generated from the Volker Campus until disposal. Only hazardous waste from contiguous properties will be stored in this location.

Container - that vessel in which the chemical was originally contained or into which the chemical may have been placed for storage in the case of damage to the original container and should be UN/USDOT approved. Chemicals may not be stored in milk jugs, trash bags, cardboard boxes or any other containers that are not UN/USDOT approved. All containers must have secured lids, not rubber stoppers, corks, aluminum foil, shrink tape, Saran wrap, etc. An apparatus with secured chemicals, such as a monometer, would not be considered a container by this CMP. See also the definitions of Original Container, Empty Container, Use Container, Secondary Container, and Hazardous Waste Container.

Empty Container - empty containers of Hazardous Chemicals as defined in 40 CFR 261.7 may be managed in two ways depending on the nature of the contents.

1) Containers used for chemicals listed in the RCRA P List (Acute Hazardous) or
Mercury containing chemicals must be disposed of through Environmental Health and Safety and should not be rinsed. These containers will be listed on the Hazardous Waste Request Form via the Onsite system (see Appendix B) with other chemicals.

2) Containers used for all other labeled chemicals may be triple rinsed, the rinseate placed in a proper waste container, obliterate the labels, and place the empty container in the trash or reuse it.

Environmental Health and Safety (EHS) – Department responsible for implementation and enforcement of Federal, State and Local regulatory compliance, environmental and occupational safety management at UMKC.

Exempted Product Categories/List - categories of chemicals commonly in use in the laboratories and determined to be non-hazardous based on the regulatory definition of a hazardous chemical. These chemicals will not be entered into the Bar Code System. Product will not be added to the Exempted Product Categories List without approval of EHS. An Exempted Product Categories List of chemicals specifically excluded from the Inventory/Labeling System will be maintained by EHS and is found in Appendix A.

Generator – see Hazardous Materials Manager

Hazardous Chemical - any chemical which is a physical or health hazard (29 CFR 1910.1200). For purposes of this Chemical Management Plan, chemicals to be inventoried and labeled include all listed under RCRA 40 CFR 261.31, 261.32, 261.33 (e) and (f) including chemicals that could generate a characteristic waste, chemicals on the RCRA- P and U Lists, and the California List. The combined California, RCRA- P and U Lists are found in Appendix A.

If the chemical is on the RCRA- P List (see Appendix A) or contains mercury, it must also be noted on the container with a red “P” to indicate, when empty, the container will be properly disposed through EHS.

Some categories of chemicals have been excluded from the Inventory/Labeling System and placed in the Exempted Product Categories/List. Chemicals not covered in the RCRA Regulations and Lists or the Exempted Product Categories/List will be inventoried and labeled, unless specifically exempted by the Director of EHS.

The purchaser of the chemical is responsible for determining whether the chemical must be included in the Bar Code System. To make the determination, the purchaser may seek assistance from EHS or he (or she) may consult the chemical's Safety Data Sheet (SDS). An SDS shall be retained in the file for all Hazardous Chemicals.

Chemicals formulated in conjunction with ongoing research are exempted from the definition of a Hazardous Chemical but require a waste determination and may have to be disposed of as hazardous chemicals.
Hazardous Waste Request Form - web based form via the Onsite system which information is provided to EHS by the Hazardous Materials Manager or Hazardous Materials Supervisor and must accompany chemicals and empty containers that had contained chemicals from the RCRA P-List or contains Mercury.
Hazardous Materials Manager - person who is designated in the Chemical Management Plan as having the responsibility of maintaining an inventory of chemicals in the Central Storage Areas and in the Distribution Areas for laboratories not served by Central Storage Areas. That person is also responsible for the safe storage and proper handling of the chemicals in the Central Storage Area. As chemicals will not be stored in the Distribution Areas, the Hazardous Materials Managers of those areas will be responsible for maintaining the inventory of all incoming chemicals, the associated Safety Data Sheets, and distribution information. The Hazardous Material Manager is also responsible for oversite of Hazardous Waste determination and disposal requiring annual training by EHS.

Hazardous Materials Supervisor (Principal Investigator) - person designated as responsible for the safe storage of, and the maintenance of, an inventory of chemicals, and Empty Container management within specific laboratories. This person is trained and competent in complying with the requirements of this Chemical Management Plan. This supervisor may designate and train persons under his or her supervision to be responsible for a particular laboratory. Such persons would be authorized users (see Authorized Users List) as defined in this Chemical Management Plan.

Hazardous Materials Worker - persons designated by a Hazardous Materials Manager or Supervisor (Principal Investigator) as responsible for a specific laboratory or facility (hereinafter, laboratory) and who are authorized, along with Hazardous Materials Supervisor, to accept Hazardous Chemicals, products or byproducts (hereinafter, chemicals) from a Central Storage Area or Distribution Area for use. An Authorized User List must be posted in each laboratory.
Hazardous Waste - chemicals that meet the RCRA definition for hazardous waste (40 CFR 261.30 (b), Ignitable, Corrosive, Reactive, Toxicity Characteristic, Acute Hazardous and Toxic), Hazardous Chemicals past their shelf life, or damaged Hazardous Chemicals. Any residue from a compound formulated in the laboratory from non-hazardous constituents but which is subsequently hazardous by RCRA definition will be managed as hazardous waste. Spill debris, cleanup chemicals, and broken apparatus involving any RCRA defined Hazardous Chemicals will also be considered hazardous wastes per a waste determination.

These chemicals will be placed in satellite accumulation containers which will be properly labeled with all required information (see Satellite Accumulation Label). Hazardous Materials Supervisors are responsible for identifying the chemicals in these containers. These satellite accumulation containers must remain closed unless adding chemicals to them. UMKC is under the Federal Option in Missouri. EHS recommends that containers be maintained in the Satellite Accumulation Area for no longer than one year, or until full. When the containers are full, EHS recommends the container(s) be removed to the hazardous waste storage area. A Hazardous Waste Request Form via the Onsite system must be completed for disposition of wastes by EHS. The wastes identified in the Hazardous Waste Request Form will be removed by EHS.
All spent aerosol containers will be collected by **EHS**.

Certain categories of chemicals may be neutralized in the laboratories to render the residue non-hazardous. Such items are specifically addressed in the **Chemical Management and Treatment Protocols** included in Appendix C. Only these categories of chemicals may be neutralized and/or managed outside **EHS**’ normal procedures for chemical disposal. None of the untreated chemicals may be disposed via the sanitary sewer system or the normal trash handling system.

Hazardous Waste Container – Container that contains **Hazardous Waste**

Hazardous Waste Tag – A tag containing the required information for classifying the chemicals for proper recycling, storage or disposal is to be attached by the **Hazardous Materials Manager** or designate, to each container of waste hazardous chemicals to be collected by **EHS**. This tag/label must accompany each container of chemical to the **CSB**. Waste chemicals without the tag/label, will not be retrieved by **EHS**. An example of this label is found in Appendix B.

Inventory - electronic documentation of the Bar Code Number, the Hazardous Chemical Name, the volume (L) or quantity (kg), and the CAS Number of all hazardous chemicals maintained on each Campus. **Hazardous Materials Managers** will have access to the inventory. Purchasers of chemicals are required to enter all new **Hazardous Chemicals** into the inventory system and remove all those consumed or removed for disposal. All items meeting the criteria for a hazardous chemical must be inventoried. Hazardous chemicals may not be retained in a laboratory unless placed in the inventory system. It is the responsibility of the **Hazardous Materials Manager** or their designate to ensure that chemicals: no longer used in the laboratory; that have exceeded their shelf-life; or those in damaged containers, are removed from the inventory.

Inventory Life – It is the responsibility of the **Hazardous Materials Supervisor** to ensure that chemicals are not allowed to remain in the laboratories or storage areas beyond their useful shelf life period.

Safety Data Sheet (SDS) - document displaying the chemical identity, CAS number if applicable, toxicity, incompatibility, disposal data, and the other physical and chemical properties associated with a chemical as well as the appropriate safety procedures to be implemented in case of release and/or human exposure. The document is prepared by the manufacturer, distributor, or importer of the chemical to be kept on file by the **Hazardous Materials Supervisor** and available to all lab personnel.

Mixed Waste – a mixture of special nuclear or byproduct material regulated under the Atomic Energy Act and wastes regulated under **RCRA**. Under an agreement between the Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA), these wastes may be stored, treated, transported and disposed of as radiological wastes. Such wastes are exempted from hazardous waste handling requirements of **RCRA**. The generator of mixed waste is required to notify the state environmental agency that the mixed wastes are generated and that they will be managed under NRC rules.
Original Container – A container that still has the original vendor label, and the original contents to the container. Original containers are UN/USDOT approved. For **Hazardous Chemicals**, a **SDS** is required to be kept on file and available. This container is required to be entered into the **Bar Code System** by the purchaser of the **Hazardous Chemical** and to have a bar code label affixed. The original label must be removed and the contents triple rinsed (if hazardous) in order for the container to be disposed.

Note: P-Listed chemicals and Mercury containing chemicals must be disposed of by **EHS** and should never be considered empty or triple rinsed.

PPE – Personnel Protective Equipment

Principle Investigator or PI – see **Hazardous Materials Supervisor**

Satellite Accumulation Area - area in a laboratory where waste hazardous chemicals may be accumulated prior to collection and disposition by EHS. Such storage is to be kept to a minimum, should be at or near the point of generation and under the control of the generator. The Satellite Accumulation Area will be separate from the area in which chemicals in use are kept. The chemicals stored in the Satellite Accumulation Area must be stored in a safe manner in UN/USDOT approved containers. It is the **Hazardous Materials Supervisor’s** responsibility to have weekly inspections performed on each Satellite Accumulation Area in their labs. EHS recommends that full waste containers be removed to the hazardous waste storage area by **EHS**.

Satellite Accumulation Label - label to be attached to each container of waste hazardous chemicals. The label must contain the following information: A list of all the constituents; volume (or percentage) of each constituent; and the Start Date (the date when the first drop of waste was placed in the container). It may contain the words “Hazardous Waste” (40CFR262.34(c)(1)(ii)). This information is required by **EHS** for classifying the chemicals for proper transport, recycling, storage or disposal. These labeled containers will be collected by **EHS** for disposal or recycling. This label must accompany each container to the **CSB**. The label is produced through the Onsite system Satellite Accumulation function. Unlabeled chemicals will not be retrieved by **EHS**. An example of this label is found in Appendix B.

Scanner – a hand-held device that scans hazardous chemical bar codes on inventoried containers to update the **Bar Code System**.

Secondary Container – a container in which the initial container is placed when it is too small to affix the bar code to it or when the **Original Container** is to be moved between labs.

13
Use Container - a container, e.g., flask or plastic squeeze bottle, in which chemicals, hazardous or non-hazardous, are contained and left unattended in the laboratory. These containers must have the name of the chemical affixed to them. They do not require Bar Codes. An example would be a plastic squeeze bottle containing distilled water left unattended on a bench top. The bottle must be labeled “Distilled Water.”

If a Use Container contains a Hazardous Chemical, it must have a screw-on lid.

Waste Container – see **Hazardous Waste Container**
IDENTIFICATION OF HAZARDOUS CHEMICALS

2.1 Identification and Inventory/Labeling

Identification of hazardous chemicals will be made at the time of purchase. Items meeting the criteria will be entered into the Bar Code System. For purposes of this CMP, chemicals to be inventoried and labeled include:

- all chemicals listed under RCRA 40 CFR 261.31, 261.32, 261.33 (e) and (f) including compounds that could generate a characteristic waste

- RCRA- P and U Listed and California Listed chemicals and DHS Chemicals of interest (see Appendix A)

- Containers of chemicals on the RCRA- P List and chemicals containing mercury will be specially marked with a red “P” and disposed of as hazardous chemicals through EHS

Some categories of chemicals have been excluded from the Bar Code System forming an Exempted Product Categories List. Chemicals NOT covered in the RCRA Lists or the Exempted Product Categories List will be inventoried unless specifically exempted by the Director of EHS.

Requests to exempt chemicals from the Bar Code System should be submitted to the Director of EHS. If approved by the Director of EHS, the chemical can be removed from the Bar Code System.

The purchaser of the hazardous chemical is responsible for making the determination as to whether the chemical is to be entered in the system. EHS can provide assistance, or the purchaser may consult the SDS for the chemical. Once a chemical is determined to be hazardous, the purchaser must enter the following information into the Bar Code System:

1) chemical identity
2) quantity of chemical
3) lab location

Once the information has been entered into the inventory, the bar code label may be obtained from the Hazardous Materials Manager for the area. A bar
code label must be affixed to each container. When inventoried chemicals are no longer needed in a specific laboratory, the Hazardous Materials Supervisor may transfer or arrange with EHS for the transfer of the chemical(s) to another laboratory. The Hazardous Materials Supervisor may move chemicals within a building, but must notify the Hazardous Materials Manager of their department. Environmental Health and Safety is required to be used when chemicals are moved between buildings. In either case, secondary containment is required when the chemicals are moved.
3 HAZARDOUS CHEMICALS MANAGEMENT

3.1 Chemical Purchase
Hazardous Materials Supervisors may purchase chemicals or chemicals may be ordered through the University purchasing system. No chemicals may be received without an accompanying SDS sheet.

3.2 Laboratory or Facility – Management Responsibilities
As previously stated, the Hazardous Materials Supervisor is responsible for:

- entering hazardous chemicals in his or her laboratory into the inventory system (Bar Code System)
- placing the appropriate bar code label on each of the inventoried chemical containers
- updating the system as required due to chemical transfer or disposal
- removing spent chemicals, chemicals in damaged containers, and chemicals that have exceeded their shelf life from the inventory

A bar code label is issued by the Hazardous Materials Manager when the hazardous chemical is entered into the Bar Code System by the purchaser of the chemical. The bar code must be affixed to the container. If the container is refrigerated, the bar code may be placed on the outside of the refrigerator. All bar codes must be displayed vertically such that they can be easily read by the scanner used by EHS staff during inspections. The bar code will display the following information:

- a unique number generated by the Bar Code System
- the name of the chemical
- the start use date of the chemical
- the hazardous material supervisor's name
- a red “P” if the material is a RCRA-P listed waste or a chemical containing mercury
3.3 **Hazardous Waste Chemicals**

The hazardous waste chemical containers will be labeled with the name of the chemical(s) and the date (month/day/year) when the chemical was first added to the container. If the chemical is a mixture, the percentage content of at least two major components must be indicated on the label. This information is necessary in order to allow EHS to classify the chemical for recycling or disposal. Waste hazardous chemicals, properly containerized and identified, will be retrieved by EHS. A Hazardous Waste Request Form must be generated from the Onsite system from the EHS website and clicking on the Onsite Chemical tracking icon: http://www.umkc.edu/finadmin/ehs/

An example is included in Appendix B. The following information is required for the form:

- the date the form is submitted
- the department of school from which the waste is to be picked up
- the generator’s name
- the name of the person authorizing charges for the pickup
- account name and number to be charged
- location of wastes to be picked up
- notation of immediate attention required
- the names and volumes of chemical wastes to be picked up
- information such as container type, and waste characteristic

All waste containers must have a secure lid on them at all times unless adding chemicals to the container. All containers with hazardous chemicals must have a screw-on lid.

3.4 **Damaged Containers**

Containers of chemicals whose integrity has been compromised must be replaced. If the chemical is still usable and needed, the contents may be transferred to another compatible, UN/USDOT approved container. A proper label must then be applied and a new bar code must be issued (or the required information must be transferred to the new label). The modification
would be noted in both the Central Storage Area and laboratory inventories. If the chemical is not in use nor anticipated to be used within one year, the contents will be transferred to another container and returned to Central Storage Area. Central Storage Area personnel may return the item to storage or, if there is no anticipated use for the item, designate it for retrieval by EHS. The disposition would be noted in both the Central Storage Area and laboratory inventories. In laboratories not served by a Central Storage Area, a chemical not in continuous use will be retrieved by EHS for disposition.

3.5 **Empty Containers**

Empty containers of hazardous chemicals as defined in 40 CFR 261.7 may be managed in two ways depending on the nature of the contents. Empty containers used for chemicals listed in the RCRA P List (Acute Hazardous) or chemicals containing mercury must be disposed of through EHS. These containers will be listed on the Hazardous Waste Request Form via the Onsite system with other chemicals. Containers used for other labeled chemicals may be triple rinsed, the rinseate placed in a proper waste container and the empty container reused or disposed of as refuse. Remove or obliterate labels on all empty containers prior to disposal. Remove chemical from the inventory system.

3.6 **Disposition - Hazardous Chemicals**

EHS will be responsible for retrieval and disposal of chemicals from laboratory Satellite Accumulation Areas (exclusive of items treated and disposed of according to Chemical Management and Treatment Protocols and clean, empty containers of non-hazardous chemicals). Hazardous Material Supervisors will be responsible for identifying chemicals for retrieval by EHS. A Hazardous Waste Request Form (see Appendix B) must be completed from the Onsite system which can be accessed through the EHS website, per the instructions, for transfer to the CSB. It is the generator’s responsibility to remove the chemical from the inventory system.
3.7 Audits of Laboratories or Other Areas Generating Hazardous Waste

On an annual basis, EHS staff will audit each laboratory within the jurisdiction of the CMP. Audits will be performed on a schedule to accommodate teaching schedules. A physical audit of all chemical use and storage areas and satellite accumulation areas will be performed for proper labeling, container compatibility, and container integrity. The bar codes on the hazardous chemicals will be scanned and compared with the inventory. The condition of containers will be noted and compared to inventory information. Laboratory training records and the authorized user list will be reviewed to ensure that personnel in the laboratory are properly trained and that the authorized user list is up-to-date. The Hazardous Materials Supervisor (or designated lab supervisor) will be interviewed regarding waste treatment protocols and procedures.
Laboratories with discrepancies will be notified and re-inspected within thirty days of the initial audit. A copy of the audit report will be provided to the Hazardous Materials Manager and Supervisor. The audit reports will be maintained for at least two years.
Implementation of the Plan

4.1 Administration

“The Chancellor of the University of Missouri – Kansas City (UMKC), has the ultimate responsibility to ensure that all campus activities comply with regulatory agency requirements concerning environmental health and safety conditions existing at the University. The Chancellor may at his or her discretion delegate that responsibility and commensurate authority to an appropriate administrative officer of the University. At this time, I am officially delegating this responsibility to the Vice Chancellor for Administration and Finance and through him the delegation extends to the Director of Environmental Health and Safety (EHS). Through this delegation, the Director of EHS has the operational responsibility and authority necessary to achieve compliance with environmental health and safety regulations at UMKC. This includes authorization to immediately stop activities or conditions that would constitute an urgent or serious health risk to members of the campus community or to the environment.”

Environmental Management System Regulatory Compliance, Reporting and Authorization May 25, 2006

The CMP is administered within the established Central Storage or Distribution Areas and each academic department (laboratory) or service unit (facility) that use hazardous chemicals and/or generates hazardous waste. The proper management of chemicals within each facility is the responsibility of the Faculty, Staff, Students, and visitors to the UMKC campus associated with each facility. Designation of Hazardous Materials Managers and Supervisors and the delegation of responsibility for implementing the CMP procedures in the Central Storage Areas, Distribution Areas and laboratories are made at the discretion of the Dean, Chairperson or director of the affected area with approval of the Department of EHS. Assignments are dependent upon area-specific factors such as: a physical layout; size and complexity of the operation; an individual's proximity to and familiarity with the hazardous chemicals; and the variety and quantity of used chemicals generated. In research and teaching laboratories the Hazardous Materials Supervisor is generally the principal investigator or
instructing professor. For service and support units, line supervisors and/or assistant directors generally serve as the Hazardous Materials Supervisors. Each area and service unit affected has documented 1) personnel assigned, 2) area of responsibility, and 3) duration of responsibility. EHS should be notified of changes in area or service unit personnel status.

A list of all personnel authorized by the Hazardous Materials Supervisors to accept/receive chemicals into the facility from a Central Storage Area, a Distribution Area, or a vendor should be kept on record by the respective Hazardous Materials Manager, and EHS with a list posted in the facility. A list of Central Storage Areas, facilities, and laboratories with associated responsible persons shall be maintained by EHS.

“In order to continually certify that UMKC is in compliance with appropriate safety regulations and our environmental management system, it is necessary for the Director of EHS to periodically perform compliance assessments of university safety programs. From these assessments an Annual Environmental Compliance Report will be provided to the Chancellor detailing the status of compliance, recommended program modifications, and significant regulatory changes.” Environmental Management System Regulatory Compliance, Reporting and Authorization May 25, 2006

4.2 Personnel Training

Training will be provided by EHS staff to newly assigned individuals within 30 days of anticipated use of hazardous chemicals. It is the responsibility of the Hazardous Materials Managers to notify EHS of newly assigned individuals with anticipated use of hazardous chemicals. Approximately two hours of training will be provided including:

1) an overview of the regulatory background
2) the definitions of hazardous chemical to be labeled in the Inventory/Labeling System (including empty containers)
3) an overview of used hazardous chemical management
4) emergency response
5) instruction in the use of the documentation forms
6) a review of university policy (CMP) on hazardous chemicals management
7) empty containers
8) regulatory changes

Training will be modified to address compliance issues or changes in requirements. Annual retraining will be provided for Hazardous Materials Managers. Training records will be documented and maintained by EHS. It is the responsibility of the Hazardous Materials Managers to distribute pertinent information to their Hazardous Materials Supervisors and Hazardous Material Workers. Refresher training by EHS personnel will be provided to the Hazardous Material Supervisors and Hazardous Material Workers as necessary to update substantial changes in the regulations and/or UMKC policies with respect to the safe use and handling of hazardous chemicals.
Monitoring and Compliance Reporting

5.1 EHS Audits of Central Storage Areas and Laboratories

EHS is responsible for auditing each laboratory annually using the EHS Audit Checklist to document findings and is responsible for monitoring the CMP under established protocols. An audit consists of a review of the hazardous chemicals, storage practices employed, the status of the containers, container labeling, and the shelf life information if available are observed and inspected. The bar code is scanned and compared with the laboratory’s inventory. The Authorized Users List is examined, and the Hazardous Materials Supervisor (or designated lab supervisor) is interviewed regarding chemical and waste management practice. The EHS Audit Checklist is found in Appendix B.

Facilities with deficiencies, not deemed an Urgent or Serious Health Risk (see Section 4.1), will be subject to re-inspection within thirty days of the initial audit. Reports of the audit findings are forwarded to the Hazardous Materials Manager and Supervisor, and the Director of EHS. The reports include deficiencies noted and corrective action recommended.

A laboratory with deficiencies will be allowed thirty days from the date of notification to come into compliance. At the discretion of the Director of EHS, if there is a potential threat to health or environment, immediate action will be taken. If it is not possible to achieve compliance within the period, the Hazardous Materials Supervisor must notify the Director of EHS and request assistance. However, if within that time no request for assistance is made and no action is taken to remedy the deficiency, EHS will issue a warning letter to the Hazardous Materials Supervisor and a copy to the Hazardous Materials Manager.

The letter will state, that unless the deficiency is corrected within thirty days, enforcement action will be taken. At the discretion of the Director of EHS and with approval of the Vice-Chancellor of Administrative Services and the Provost, enforcement actions can include correction or cleanup of the deficiency by EHS.
personnel with the costs assessed to the department; closure of the laboratory, and/or loss of laboratory privileges; or other appropriate measures specific to the deficiency.
6

RCRA Generator Responsibilities

6.1 **Chemical Storage, Transportation, and Disposal**

EHS is responsible for transporting all hazardous chemicals and hazardous waste. Hazardous Waste on the Volker Campus will be removed from the satellite accumulation areas to the Chemical Storage Building upon the formal request of the Hazardous Material Supervisor or Manager. The Chemical Storage Building is a 90-day hazardous waste storage area, managed in accordance with 40 CFR Part 262. Hazardous Waste on the Hospital Hill Campus will be removed from the satellite accumulation areas to the SQG Storage area. This area is a 180-day hazardous waste storage area, managed in accordance with 40 CFR Part 262.

6.2 **Generator Status**

The University Volker campus is registered as a Large Quantity Generator (LQG). LQG is defined as an entity that generates 2200 pounds or more of hazardous waste, or 2.2 pounds of acute hazardous waste, per calendar month. Under Missouri regulations, anyone who stores 2200 pounds or more of hazardous waste at any period is classified as a LQG.

The University Hospital Hill Campus is considered as a Small Quantity Generator (SQG). A SQG may generate or store more than 220, but less than 2200 pounds of hazardous waste, or 2.2 pounds of acute hazardous waste, per month with 180 day storage.

6.3 **Generator Requirements**

6.3.1 **Waste Characterization**

Anyone who generates a solid waste is required to determine if that waste is hazardous. The determination may be made by analytical means or by knowledge of the constituents. Chemicals or materials containing compounds listed in the RCRA regulations, or wastes that are hazardous by characteristic, as described in this plan, must be managed
as hazardous waste.

UMKC uses the inventory system to identify chemicals, at purchase, that could require management as hazardous waste upon disposal.

As required for a generator of hazardous waste, the University has determined the quantity of hazardous waste generated on both the Volker campus and the Medical and Hospital Hill campus. Appropriate EPA identification numbers have been obtained for each:

- Volker campus – MOD073133647
- Hospital Hill campus- MOR000509216

6.3.2 **Hazardous Waste located in Satellite Accumulation Areas Requirements**

A hazardous waste generator may store hazardous waste in an appropriate container at or near the point of generation in what is called a Satellite Accumulation Area. Once the container(s) of hazardous waste is full, EHS recommends the container(s) be removed to the hazardous waste storage area. The hazardous waste request form via the Onsite system is used by generators at UMKC to request pickup of the hazardous wastes in their satellite accumulation areas.

The containers in the satellite accumulation areas at all generator locations must identify the contents of the container. It may be labeled “Hazardous Waste” as well. An example label is included in Appendix D.

Some specified hazardous wastes may be rendered non-hazardous. Special protocols have been prepared for the hazardous waste treatments that are allowed. The list of Approved Treatment Protocols is included in Appendix C.
6.3.3 **Hazardous Waste Storage Requirements**

As previously described, the EHS has the responsibility to transport hazardous wastes from the satellite accumulation areas to either the SQG hazardous waste storage area at the Hospital Hill campus or the LQG hazardous waste storage area on the Volker campus. Hazardous wastes generated at the Hospital Hill campus may **NOT** be transported to the Volker campus, nor can hazardous waste generated at the Volker campus be transferred to the Hospital Hill campus.

6.3.4 **SQG Storage Area**

The SQG Hazardous Waste Storage Area is located in the Health Science Building in the loading dock area. The storage area is locked, and the list of emergency contacts is posted near the nearest telephone. The EHS staff and the Hazardous Materials Managers in the area have keys to the room.

The waste must be stored in appropriate and compatible containers and the containers must be in good condition. The containers must be labeled “Hazardous Waste” and the date the wastes are initially placed in the container must be affixed to the label. An example label is provided in Appendix D. The storage area is inspected weekly to ensure that the wastes are appropriately contained, storage time has not been exceeded, and there have been no accidents.

Hazardous wastes transported from satellite accumulation areas to the SQG storage area may be retained on site for no more than 180 days. Special arrangements may be made to store the wastes up to 270 days if the wastes must be transported more than 200 miles from the generation site for disposal.

6.3.5 **LQG Hazardous Waste Storage Area**

This storage area only serves the Volker campus. Both hazardous wastes and radiation wastes are stored in the building. EHS is responsible for transportation of **ALL** hazardous wastes accumulated in
the satellite accumulation areas to this storage area. The storage area is secure and is kept locked during periods when personnel are not present.

As with the SQG hazardous waste storage area, the LQG hazardous wastes collected by EHS from the satellite accumulation areas must be placed in appropriate and compatible containers, labeled “Hazardous Waste”, and the date of initial waste placement must be noted on the label.

Hazardous wastes may **NOT** be stored in the LQG Hazardous Waste Storage Area for more than 90 days. The storage area is inspected weekly to ensure that the wastes are appropriately contained, storage time has not been exceeded, and there have been no incidents.

6.3.6 **Hazardous Waste Transporting/Disposal Requirements**

Hazardous waste may be transported only by transporters with proper EPA ID numbers, to properly permitted hazardous waste facilities. In order to transport hazardous wastes from the hazardous waste storage areas, the wastes must be properly packaged and labeled in accordance with Department of Transportation (DOT) requirements. Further information may be obtained from the DOT Hazardous Materials Information Line at 202-366-4488.

No hazardous waste may be transported without a “Hazardous Waste Manifest”. The manifest is a multiple copy form that is completed at the time the waste is shipped. The generator and the transporter sign the completed form and the top copy is retained by the generator. The transporter carries the remaining copies to the disposal site where the receiver signs the document. A copy of the document signed by the disposer is then returned to the generator. **Only EHS personnel are authorized to sign a hazardous waste manifest.**

6.3.7 **Recordkeeping and Reporting Requirements**

All information relative to waste characterization must be retained for as
long as the waste stream continues to be generated.

All hazardous waste manifests (copy signed and returned by the disposer of the waste) must be retained on site (in EHS Department files) for 3 years or more from the issue date. If the copy of the manifest signed by the treatment/disposal facility has not been returned within 35 days, then EHS will attempt to locate the hazardous waste by contacting the facility. If the signed manifest has not been returned within 45 days, then EHS will submit an exception report to the EPA – Region VII providing a copy of the first sheet of the manifest and describing the efforts to obtain the signed manifest.

EHS is responsible for submitting a biennial report to the Region VII EPA office. The reports include the generator ID number, information relative to the transporter(s), a description of the quantity of wastes shipped, and a discussion of the measures taken to reduce the volume and toxicity of the hazardous wastes generation and disposal. As with the other records, copies of the biennial reports must be retained for a minimum of 3 years.

6.3.8 Contingency Plan
LQGs are required to prepare a contingency plan outlining how workers will respond to spills or releases of the hazardous wastes in their care. The UMKC Contingency Plan is reviewed and revised by the Director of EHS on an annual basis.

6.3.9 Employee Training
Personnel that have access to the Chemical Storage Building and those that transport the hazardous chemicals from the Satellite Accumulation Areas are required to be trained regarding the relative hazards of the chemicals they will be managing, and the practices and measures in the Facility’s contingency plan. Individuals working only in the Satellite Accumulation Areas are required to receive the similar training. The University provides training suitable to both groups as required. Initial training for the Director of EHS, the Sr. Environmental Chemist, and
Hazardous Materials Coordinator will consist of 40 Hour HazWoper training and annual attendance thereafter at a RCRA regulatory review session (40 CFR265.16). See Appendix D for a list of the available training.
APPENDIX A

- UMKC combined list from RCRA P List; RCRA U List; California List; DHS Chemicals of Interest; and Peroxide forming Chemicals
- Characteristics of Hazardous Chemicals: Ignitability, Corrosivity, Reactivity, and Toxicity Characteristic
- Exempted Product Categories List
UMKC Combined Lists from the RCRA P-List; RCRA U-List, California List; DHS Chemicals of Interest and Peroxide Forming Chemicals

Items in Bold need to be marked with a red P. They must be disposed of through EHS when empty. See section 3.5

Abbreviations are as follows: T=Toxic; I=Ignitable; C=Corrosive; R=Reactive

- **A2213** - Acetic acid, lead(2+) salt
 P-Listed (Mark w/ red P)

- **Ac 5,727 (3-Isopropylphenyl N-methylcarbamate) (T)** - Acetic acid, thallium(1+) salt
 P-Listed (Mark w/ red P)

- **Acetal** - Acetic acid, (2,4,5-trichlorophenoxy)-
 DHS Chemical of Interest

- **Acetaldehyde (I)** - Acetone (I)
 DHS Chemical of Interest

- **Acetaldehyde, chloro- (T)** - Acetone cyanohydrin (T)
 P-Listed (Mark w/ red P)

- **Acetaldehyde, trichloro- (T)** - Acetone cyanohydrin, stabilized
 P-Listed (Mark w/ red P)

- **Acetamide, N-(4-ethoxyphenyl)-** - Acetophenone
 DHS Chemical of Interest

- **Acetamide, N-9H-fluoren-2-yl- (T)** - 1-Acetoxybenzene (and isomers) (T,I)
 DHS Chemical of Interest

- **Acetamide, N-(aminothioxomethyl)- (T)** - Acetyl benzoic acid (T,I,R)
 P-Listed (Mark w/ red P)

- **Acetamide, 2-fluoro- (T)** - Acetyl chloride (C,R,T)
 P-Listed (Mark w/ red P)

- **Acetic acid (T,C,I)** - Acetyl chloride
 DHS Chemical of Interest

- **Acetic acid, (2,4-dichlorophenoxy)-, salts & esters** - Acetyl chloride (T,I,R)
 DHS Chemical of Interest

- **Acetic acid ethyl ester (I)** - 2-Acetamidofluorene
 DHS Chemical of Interest

- **Acetic acid, fluoro-, sodium salt (T)** - Acetylene
 DHS Chemical of Interest

- **Acetaminofluorene** - 1-Acetyl-2-thiourea
 DHS Chemical of Interest

- **Acetonitrile (T)** - Acrylic acid (I)
 DHS Chemical of Interest

- **Acrylamide** - Acrylonitrile
 DHS Chemical of Interest

- **Acrylyl chloride** - Adiponitrile (T)
 DHS Chemical of Interest

- **ACTIDIONE (T)** - 4-ADP (4-Aminodiphenyl) (T)
 DHS Chemical of Interest

- **Adiponitrile (T)** - AFL 1082 (Fluoroacetanilide) (T)
 DHS Chemical of Interest

- **Aldicarb** - AGALLOL (T)
 P-Listed (Mark w/ red P)

- **Aldicarb sulfone** - 1-Aldrin
 P-Listed (Mark w/ red P)
- Alkyl aluminum chloride (C,I,R)
- 4-Amidino-1-(nitrosamino-amidino)-1-tetra-zene (I,R)
- Aluminum diethyl monochloride (I,R)
- Ammonia (conc. 20% or greater)

- Alkyl aluminum compounds (C,I,R)
- 1-Aminobutane (and isomers) (T)
- Ammonium arsenate (T)
- Ammonium bichromate (T,C,I)

- Allyl alcohol

- P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Aminobenzene (T)
- Aminobutane (T)
- Aminodiphenyl (T)
- Aminomethane (T,I)
- Aminomethyl-3-isoxazolol (T)
- 1-Aminopentane (and isomers) (T,I)
- 1-Aminohexane (and isomers) (T,I)
- Aminopyridine (T)
- 1H-1,2,4-triazol-1-yl)-N,N,N',N'-tetramethyl phosphonic diamide (T)
- 2-Aminopropane (T,I)
- 2-Aminopyridine (T)
- 4-Aminopyridine (T)
- Ammonium nitrate (I,R)
- Ammonium perchlorate (I,R)

- Allyl alcohol

- P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Aminobenzene (T)
- Aminobutane (T)
- Aminodiphenyl (T)
- Aminomethane (T,I)
- Aminomethyl-3-isoxazolol (T)
- 1-Aminopentane (and isomers) (T,I)
- 1-Aminohexane (and isomers) (T,I)
- Aminopyridine (T)
- 1H-1,2,4-triazol-1-yl)-N,N,N',N'-tetramethyl phosphonic diamide (T)
- 2-Aminopropane (T,I)
- 2-Aminopyridine (T)
- 4-Aminopyridine (T)
- Ammonium nitrate (I,R)
- Ammonium perchlorate (I,R)

- Allyl bromide (T,I)
- 2-Amino-4-chlorotoluene (T)
- Ammonium fluoride (T,C)

- Allyl chloride (T,I)
- 1-Aminobenzene (T)
- Aminobutane (T)
- Aminomethane (T,I)
- Ammonium fluoride (T,C)

- Allyl chlorocarbonate (T,I)
- 4-Aminodiphenyl (T)
- Ammonium dichromate (T,C,I)

- Allyl chloroformate (T,I)
- Aminodiphenyl (T)
- Ammonium dichromate (T,C,I)

- Allyl trichlorosilane (T,C,R)
- 1-Aminohexane (and isomers) (T,I)
- 1-Aminohexane (and isomers) (T,I)
- Ammonium fluoride (T,C)

- Allylamine
 DHS Chemical of Interest
- 5-(Aminomethyl)-3-isoxazolol (T)
- Aminomethyl-3-isoxazolol (T)
- Ammonium nitrate (T,C)

- Allyltrichlorosilane, stabalized
 DHS Chemical of Interest
- 5-(Aminomethyl)-3-isoxazolol
- Ammonium nitrate (T,C)
- Ammonium nitrate (nitrigen concentration of 23% or greater)

- Aluminum bromide, anhydrous
 DHS Chemical of Interest
- 1-Aminopentane (and isomers) (T,I)
- para-(5-Amino-3-phenyl-1H-1,2,4-triazol-1-yl)-N,N,N',N'-tetramethyl phosphonic diamide (T)

- Aluminum chloride (T,C)
- 2-Aminopropane (T,I)
- Ammonium nitrate (T,C)

- Aluminum chloride (anhydrous) (T,C,R)
 DHS Chemical of Interest
- 2-Aminopropane (T,I)

- Aluminum fluoride (T,C)
- 2-Aminopyridine (T)

- Aluminum nitrate (T,I)
- 4-Aminopyridine
 P-Listed (Mark w/ red P)
- Ammonium nitrate (T,I)

- Aluminum phosphide (R,T)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Aminotoluene (ortho,meta,para) (T)
- Ammonium perchlorate (I,R)

- Aluminum (powder) (I)
 DHS Chemical of Interest
- Ammonium nitrate (T,C)

- Ammonia (anhydrous)
 DHS Chemical of Interest
- Ammonium perchlorate (I,R)

- Ammonium picrate (R)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Ammonium sulfate (T,C,I,R)

- Ammonium vanadate
 P-Listed (Mark w/ red P)
- Ammonium perchlorate (I,R)
- n-Amyl acetate (T,I)
- n-Amyl chloride (T,I)
- n-Amyl mercaptan (T,I)
- n-Amyl nitrite (T,I)
- Amyl trichlorosilane (and isomers) (T,C,R)
- n-Amylamine (T,I)
- Amyltrimethylsilane

DHS Chemical of Interest

- n-Amylene (T,I)
- Aniline (I,T)
- ANIMERT V-101 (T)
- Anisoyl chloride (T,C)
- Anthracene (T)
- Antimy (T)
- Antimony chloride (T,C)
- Antimony compounds (T)
- Antimony fluoride (T,C)
- Antimony oxide (T)
- Antimony pentachloride (T,C,R)
- Antimony pentfluoride (T,C,R)

DHS Chemical of Interest

- Antimony trifluoride (T,C)
- Antimony trioxide (T)
- Antimony trisulfate (T,I)
- Antimony trisulfide (T,I,R)
- Aqua regia (T,C,I)
- ARETAN (T)

- Argentate(1-), bis(cyano-C)-, potassium

P-Listed (Mark w/ red P)

- Arroclor (Polychlorinated byphenyls)
- Arsenic (T)
- Arsenic acid and salts

P-Listed (Mark w/ red P)

- Arsenic compounds (T)
- Arsenic oxide

P-Listed (Mark w/ red P)

- Arsenic pentaselenide (T)
- Arsenic pentoxide

P-Listed (Mark w/ red P)

- Arsenic trifluoride, Arsenic chloride (T)
- Arsenic triiodide, Arsenic iodide (T)

- Arsenic trioxide

P-Listed (Mark w/ red P)

- Arsenious acid and salts (T)

P-Listed (Mark w/ red P)

- Arsenous oxide

DHS Chemical of Interest

- Arsine

DHS Chemical of Interest

- Arsine, diethyl-

P-Listed (Mark w/ red P)

- Arsines (T)

- Arsines, dimethyl-

- Arsonous dichloride, phenyl-

P-Listed (Mark w/ red P)

- Arsenic acid, dimethyl-

- Asbestos (including chrysotile, amosite, crocidolite, tremolite, anthophyllite, and actinolite) (T)

- Askarel (Polychlorinated byphenyls)

- Aqualin (T,I)

P-Listed (Mark w/ red P)

- Auraline

- Azaserine

- Aziridine

P-Listed (Mark w/ red P)
- Aziridine, 2-methyl-
P-Listed (Mark w/ red P)

- Azirino-[2′,3′:3,4]pyrrolo[1,2-
a]indole- 4,7-dione, 6-amino-8-
[[aminocarbonyl]oxy]methyl]-
1,1a,2,8,8a,8b-hexahydro-8a-
methoxy-5-
methyl-, [1aS-(1aalpha,
8beta,8aalpha,8balpha)]-

- AZODRIN (T)
- BANOL (T)

- Barban
- Barium (T,I)
- Barium azide (I,R)

DHS Chemical of Interest

- Barium bromide (T)
- Barium carbonate (T)
- Barium chlorate (T,C,I,R)
- Barium chloride (T)
- Barium chromate (T)
- Barium citrate (T)
- Barium compounds (soluble)
(T)

- Barium cyanide
P-Listed (Mark w/ red P)

- Barium fluoride (T)
- Barium fluosilicate (T)
- Barium hydroxide (T)
- Barium iodide (T)
- Barium manganate (T)

- Barium nitrate (T,I)
- Barium oxide, Barium
monoxide (T)
- Barium perchlorate (T,I,R)
- Barium permanganate
(T,I,R)
- Barium peroxide (T,I,R)
- Barium phosphate (T)
- Barium stearate (T)
- Barium sulfide (T)
- Barium sulfite (T)
- Battery acid (T,C)
- Bendiocarb
- Bendiocarb phenol
- Benomyl
- Benzene, 1-bromo-4-
phenoxy-
- Benzene, 1,2-dichloro-
- Benzene, 1,3-dichloro-
- Benzene, 1,4-dichloro-
- Benzene, 4-chloro-2-
methyl-, hydrochloride
- Benzene, 4-nitro-
P-Listed (Mark w/ red P)

- Benzene, 4,4’-
carbonimidoylbis[N,N-
dimethyl-

- Barium nitrate (T,I)
- Barium oxide, Barium
monoxide (T)
- Barium perchlorate (T,I,R)
- Barium permanganate
(T,I,R)
- Barium peroxide (T,I,R)
- Barium phosphate (T)
- Barium stearate (T)
- Barium sulfide (T)
- Barium sulfite (T)
- Battery acid (T,C)
- Bendiocarb
- Bendiocarb phenol
- Benomyl
- Benzene, 1-bromo-4-
phenoxy-
- Benzene, 1,2-dichloro-
- Benzene, 1,3-dichloro-
- Benzene, 1,4-dichloro-

- Benzenamine (I,T)
- Benzenamine, 4,4’-
carbonimidoylbis[N,N-
dimethyl-

- Benzenamine, 4-chloro-2-
methyl-, hydrochloride
- Benzenamine, 4-nitro-
P-Listed (Mark w/ red P)

- Benzenamine, 4,4’-
carbonimidoylbis[N,N-
dimethyl-

- Barium nitrate (T,I)
- Barium oxide, Barium
monoxide (T)
- Barium perchlorate (T,I,R)
- Barium permanganate
(T,I,R)
- Barium peroxide (T,I,R)
- Barium phosphate (T)
- Barium stearate (T)
- Barium sulfide (T)
- Barium sulfite (T)
- Battery acid (T,C)
- Bendiocarb
- Bendiocarb phenol
- Benomyl
- Benzene, 1-bromo-4-
phenoxy-
- Benzene, 1,2-dichloro-
- Benzene, 1,3-dichloro-
- Benzene, 1,4-dichloro-

- Benzenamine (I,T)
- Benzenamine, 4,4’-
carbonimidoylbis[N,N-
dimethyl-

- Barium nitrate (T,I)
- Barium oxide, Barium
monoxide (T)
- Barium perchlorate (T,I,R)
- Barium permanganate
(T,I,R)
- Barium peroxide (T,I,R)
- Barium phosphate (T)
- Barium stearate (T)
- Barium sulfide (T)
- Barium sulfite (T)
- Battery acid (T,C)
- Bendiocarb
- Bendiocarb phenol
- Benomyl
- Benzene, 1-bromo-4-
phenoxy-
- Benzene, 1,2-dichloro-
- Benzene, 1,3-dichloro-
- Benzene, 1,4-dichloro-
- Benzene, 1,1’-(2,2-dichloroethylidene)bis[4-chloro-]
- Benzene, (dichloromethyl)-
- Benzene, 1,3-diisocyanatomethyl- (R,T)
- Benzene, dimethyl- (I,T)
- Benzene hexachloride (Lindane) (T)
- Benzene, hexachloro-
- Benzene, hexahydro- (I)
- Benzene, methyl-
- Benzene, 1-methyl-2,4-dinitro-
- Benzene, 2-methyl-1,3-dinitro-
- Benzene, (1-methylethyl)- (I)
- Benzene, nitro-
- Benzene, pentachloro-
- Benzene, pentachloronitro-
- Benzene, 1,2,4,5-tetrachloro-
- Benzene, 1,1’-(2,2,2-trichloroethylidene)bis[4-chloro-
- Benzene, 1,1’-(2,2,2-trichloroethylidene)bis[4-methoxy-
- Benzene, (trichloromethyl)-
- Benzene, 1,3,5-trinitro-
- Benzeneacetic acid, 4-chloro-alpha-(4-chlorophenyl)-alpha-hydroxy-, ethylester
- Benzenebutanoic acid, 4-[bis(2-chloroethyl)amino]-
- Benzenediamine, ar-methyl-
- 2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester
- 1,2-Benzenedicarboxylic acid, dibutyl ester
- 1,2-Benzenedicarboxylic acid, diethyl ester
- 1,2-Benzenedicarboxylic acid, dimethyl ester
- 1,2-Benzenedicarboxylic acid, dioctyl ester
- 1,3-Benzenediol
- 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)-
- Benzenethanamine, alpha, alpha-dimethyl-
- Benzenephosphorous dichloride (I,R)
- Benzenesulfonic acid (T)
- Benzenesulfonic acid chloride (C,R)
- Benzenesulfonyl chloride (C,R)
- Benzenethiol

- Benzineacetic acid, 4-chloro-alpha-(4-chlorophenyl)-alpha-hydroxy-, ethylester
- Benzenebutanoic acid, 4-[bis(2-chloroethyl)amino]-
- Benzenediamine, ar-methyl-
- 1,2-Benzenedicarboxylic acid, dibutyl ester
- 1,2-Benzenedicarboxylic acid, diethyl ester
- 1,2-Benzenedicarboxylic acid, dimethyl ester
- 1,2-Benzenedicarboxylic acid, dioctyl ester
- 1,3-Benzenediol
- 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)-
- Benzenethanamine, alpha, alpha-dimethyl-
- Benzenephosphorous dichloride (I,R)
- Benzenesulfonic acid (T)
- Benzenesulfonic acid chloride (C,R)
- Benzenesulfonyl chloride (C,R)
- Benzenethiol

- Benzidine and salts
- Benzilic acid
- 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide, & salts
- 1,3-Benzodioxol-4-ol, 2,2-dimethyl-, methyl carbamate
- 1,3-Benzodioxol-4-ol, 2,2-dimethyl-
- 1,3-Benzodioxole, 5-(2-propenyl)
- 1,3-Benzodioxole, 5-(1-propenyl)
- 1,3-Benzodioxole, 5-propyl-
- 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-
- 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, methylcarbamate
- Benzoic acid, 2-hydroxy-, compd. with (3aS-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]indol-5-yl methylcarbamate ester (1:1)
- Benzo[rst]pentaphene
- 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenylbutyl)-, & salts, when present at concentrations of 0.3% or less
- 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenylbutyl)-, & salts, when present at
concentrations greater than 0.3%

P-Listed (Mark w/ red P)
- Benzo[a]pyrene
- 1,4-Benzoquinone (T)
- p-Benzoquinone
- Benzonitrile (C,R,T)
- Benzotrichloride (T,C,I)
- Benzotrichloride (T,C,I,R)
- Benzyl chloride
- Benzoyl peroxide (T,I,R)
- Benzyl bromide (T,C)
- Benzyl chloride (T)
- Benzyl chlorocarbonate (T,C,R)
- Benzylic chloroformate (T,R)
- Beryllium powder
- Beryllium chloride (T)
- Beryllium compounds (T)
- Beryllium copper (T)
- Beryllium fluoride (T)
- Beryllium hydride (T,C,I,R)
- Beryllium hydroxide (T)
- Beryllium oxide (T)
- BHC (Lindane) (T)
- BIDRIN (T)
- 2,2'-Bioxirane

- Biphenyl (T)
- [1,1'-Biphenyl]-4,4'-diamine
- [1,1'-Biphenyl]-4,4'-diamine, 3,3'-dichloro-
- [1,1'-Biphenyl]-4,4'-diamine, 3,3'-dimethoxy-
- [1,1'-Biphenyl]-4,4'-diamine, 3,3'-dimethyl-
- Blue vitriol (Copper Sulfate)
- BOMYL (T)
- Boranes (T,I,R)
- Boron tribromide
- Boron trichloride (T,C,R)
- Boron trichloride (T,C,R) with methyl ether (1:1)
- Boron trifluoride (T,C,R)
- Boron trifluoride (T,C,R) with methyl ether (1:1)
- BPL (beta-Propiolactone)
- Bromic acid (T)
- Bromine (T,C,I)

DHS Chemical of Interest
- Bromine chloride
- Bromine cyanide
- Bromine pentfluoride (T,C,I,R)
- Bromine trifluoride (T,C,I,R)
- Bromoacetone
- Bromophenylphenyl ether
- 3-Bromopropene (T,I)
- 3-Bromo-1-propyne (T,I)
- alpha-Bromotoluene (T,C)
- Bromotrifluorethylene
- Bromotrifluoromethane (T,C,R)
- Butadiene
- Butadiene, 1,3-
- 1,3-Butadiene, 1,1,2,3,4,4-hexachloro-
- n-Butanal (and isomers) (T,I)
- 1-Butanamine, N-butyl-N-nitroso-

- Butane

DHS Chemical of Interest

- n-Butyl acetate, 1-Acetoxymethylbutane (and isomers) (T)

- Butene

DHS Chemical of Interest

- n-Butyl alcohol (I)
- n-Butyl amine (T)
- Butyl ether (and isomers) (T,I)

- 1,2,4-Butanetriol trinitrate (R)

- n-Butanol and isomers (I)
- n-Butyl formate (and isomers) (T)

- 2-Butanone (I,T)

- Butyric acid, 2-methyl-7-[2,3-dihydroxy-2-[(1-methoxyethyl)-3-methyl-1-oxobutoxy]-methyl]-2,3,5,7a-tetrahydro-1H-pyrrolizin-1-yl ester, [1S-alpha(Z),7(2S*,3R*),7alpha]-

- 2-Butanone, peroxide (R,T)

- tert-Butyl hydroperoxide (and isomers) (T,I)

- Butyl mercaptan (T,I)

- tert-Butyl peracetate (I,R)

- tert-Butyl perbenzoate (I,R)

- tert-Butyl perpivalate (I,R)

- tert-Butyl peroxypivalate (I,R)

- Butyric acid, 2-methyl-7-[2,3-dihydroxy-2-[(1-methoxyethyl)-3-methyl-1-oxobutoxy]-methyl]-2,3,5,7a-tetrahydro-1H-pyrrolizin-1-yl ester, [1S-alpha(Z),7(2S*,3R*),7alpha]-

- 2-Butenal

- tert-Butyl peroxybenzoate (I,R)

- tert-Butyl peroxypivalate (I,R)

- Calcium cyanide

P-Listed (Mark w/ red P)

- Calcium oxide (I)

- Calcium chlorate (I,R)

- Calcium chloride (I)

- Calcium chromate

- Calcium dithionite

- Calcium hydride (C,I,R)

- Calcium hydrosulfite

- Calcium hydroxide (C)

- Calcium nitrate (T,I,R)

- Calcium oxide (T,R)

- Calcium phosphate (T)

- Calcium sulfite (T)

- Calcium sulfate (T)

- Calcium sulfate (C)

- Cadmium (powder) (T,I)

- Cadmium chloride (T)

- Cadmium compounds (T)

- Cadmium cyanide (T)

- Cadmium fluoride (T)

- Cadmium nitrate (T,I,R)

- Cadmium sulfate (T)

- Cadmium nitrate (C,I,R)

- Cadmium nitrate (T)

- Cadmium oxide (T)

- Cadmium phosphate (T)

- Cadmium phosphate (T)

- Cadmium phosphate (C)

- Cadmium phosphate (I)

- Cadmium phosphate (I,R)

- Cadmium oxide (T)

- Cadmium oxide (T)

- Cadmium oxide (I)

- Cadmium oxide (I,R)

- Cadmium oxide (I,R)

- Cadmium oxide (C)

- Cadmium oxide (C,I)

- Cadmium oxide (C,I,R)

- Cadmium oxide (C,I,R)
- Calcium hypochlorite (T,C,I,R)
- Calcium molybdate (T)
- Calcium nitrate (I,R)
- Calcium oxide, Lime (C)
- Calcium oxychloride (dry) (T,C,I,R)
- Calcium permanganate (T,I)
- Calcium peroxide (C,I)
- Calcium phosphide (T,I,R)
 \textit{DHS Chemical of Interest}
- Calcium resinate (I)
- 1-Caprylene (T,I)
- Caprylylperoxide (I)
- Carbamic acid, 1H-benzimidazol-2-yl, methyl ester
- Carbamic acid, [1-[(butylamino)carbonyl]-1H-benzimidazol-2-yl]-, methyl ester
- Carbamic acid, (3-chlorophenyl)-, 4-chloro-2-butynyl ester
- Carbamic acid, [(dibutylamino)thio]methyl-2,3-dihydro-2,2-dimethyl-7-benzofuranyl ester \textit{P-Listed (Mark w/ red P)}
- Carbamic acid, dimethyl-, 1-[(dimethylamino)carbonyl]-5-methyl-1H-pyrazol-3-yl ester \textit{P-Listed (Mark w/ red P)}
- Carbamic acid, dimethyl-, 3-methyl-1-(1-methylethyl)-1H-pyrazol-5-yl ester \textit{P-Listed (Mark w/ red P)}
- Carbamic acid, ethyl ester
- Carbamic acid, methyl-, 3-methyl-1-(1-methylethyl) \textit{P-Listed (Mark w/ red P)}
- Carbanolate (T)
- Carbaryl
- Carbendazim
- Carbamic acid, phenyl-, 1-methylcyclopropyl ester
- Carbamic acid, dipropyl-, S-(phenylmethyl) ester
- Carbamic acid, methyl-, ethanediylbis-, salts & esters
- Carbamothioic acid, bis(1-methylthyl)-, S-(2,3,3-trichloro-2-propenyl) ester
- Carbamothioic acid, bis(1-methylthyl)-, S-(2,3-dichloro-2-propenyl) ester
- Carbamothioic acid, dipluro-, S-(phenylmethyl) ester
- Carbamothioic acid, bis(1-methylthyl)-, S-(2,3,3-trichloro-2-propenyl) ester
- Carbon bisulfide \textit{P-Listed (Mark w/ red P)}
- Carbon disulfide \textit{P-Listed (Mark w/ red P)}
 \textit{DHS Chemical of Interest}
- Carbonic acid, [1,2-phenylenebis(iminocarbonothioyl)]bis-, dimethyl ester
- Carbon monoxide \textit{DHS Chemical of Interest}
- Carbon tetrachloride
- Carbonic acid, dithallium(1+) salt
- Carbonic dichloride \textit{P-Listed (Mark w/ red P)}
- Carbonic difluoride
- Carbonoiodo, dipropyl, methyl ester \textit{I,T)
- Carbonoiodo, dimethyl, 1H-pyrazol-5-yl ester \textit{P-Listed (Mark w/ red P)}
- Carbonyl chloride (I,R) \textit{P-Listed (Mark w/ red P)}
- Carbonyl fluoride \textit{DHS Chemical of Interest}
- Carbonyl sulfide \textit{DHS Chemical of Interest}
- Carbophenothion (T)
- Castrix (T)
- Carbofuran \textit{P-Listed (Mark w/ red P)}
- Carbofuran phenol
- Carbolic acid (T,C)
- 2-Carbomethoxy-1-methylvinyl dimethyl phosphate (T)
- Carbofuran phenol
- Carbolic acid (T,C)
- 2-Carbomethoxy-1-methylvinyl dimethyl phosphate (T)
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caustic potash (T,C)</td>
<td>- Chloracetaldheyde (P\text{-Listed}) (Mark w/ red P)</td>
</tr>
<tr>
<td>Caustic soda (T,C)</td>
<td>- Chloroacetic acid (T,C)</td>
</tr>
<tr>
<td>Cellulose nitrate (I,R)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Ceresan liquid (T)</td>
<td>- alpha-Chloroacetophenone, Phenyl chloromethyl ketone (T)</td>
</tr>
<tr>
<td>CHEMFLORM (T)</td>
<td>- Chloracetic acid (T,C)</td>
</tr>
<tr>
<td>Chloral</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chloral hydrate (T)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlordane, alpha & gamma isomers</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorecone (T)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chloretol (Polychlorinated byphenyls) (T)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorfenvinphos (T)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorine (T,C,I,R)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorine dioxide (T,C,I,R)</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorine monoxide</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorine pentafluoride ((T,C,I,R))</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlorine trifluoride ((T,C,I,R))</td>
<td>- Chloroacetone (T)</td>
</tr>
<tr>
<td>Chlornaphazin</td>
<td>- Chloroacetone (T)</td>
</tr>
</tbody>
</table>

- 2-Chloro-4,5-dimethylphenyl methylcarbamate (T) |
- 1-Chloro-2,4-dinitrobenzene (I,R) |
- exo-3-Chloro-endo-6-cyano-2-norbornanone-0-(methylcarbamoyl) oxime (T) |
- Chloroethane (T,I) |
- 2-Chloroethyl vinyl ether |
- tris(2-chloroethyl)amine |
- 2-Chloroethylchloromethylsulfide |
- (2-Chloroethyl)ethylamine, bis-DHS Chemical of Interest |
- (2-Chloroethyl)methylamine, bis-DHS Chemical of Interest |
- (2-Chloroethyl)sulfide, bis-DHS Chemical of Interest |
- (2-Chloroethylthio)-n-butane, 1,4-bis-DHS Chemical of Interest |
- (2-Chloroethylthio)ethane, 1,2-bis-DHS Chemical of Interest |
- (2-Chloroethylthio)ether, Bis-DHS Chemical of Interest |
- (2-Chloroethylthio)methane, bis-DHS Chemical of Interest |
- (2-chloroethylthiomethyl)ether, bis-

 DHS Chemical of Interest

- (2-chloroethylthio-n-pentane, 1,5-bis-

 DHS Chemical of Interest

- (2-choroethylthio)-n-propane

 DHS Chemical of Interest

- Chloroform

 DHS Chemical of Interest

- 3-Chloropropionitrile

 P-Listed (Mark w/ red P)

- Chloromethane

 DHS Chemical of Interest

- Chloromethyl ether

 DHS Chemical of Interest

- Chloromethyl methyl ether

 DHS Chemical of Interest

- bis (Chloromethyl) ether (T)

 P-Listed (Mark w/ red P)

- Chloromethyl methyl ether

 DHS Chemical of Interest

- beta-Chloronaphthalene

 Chromic chloride (T)

- Chloronitrobenzene (ortho,meta,para) (T)

 Chromic hydroxide (T)

- 1-Chloropentane (and isomers) (T,I)

 Chromic chloroarsine

- o-Chlorophenol

 Chromic sulfite

- S[[4-Chlorophenylthio]methyl] O,O-diethyl phosphorodithioate (T)

 Chromic trifluoride (T)

- 1-(o-Chlorophenyl)thio-urea

 P-Listed (Mark w/ red P)

- S-para-Chlorophenyl-2,4,5-trichlorophenyl sulfide (T)

 Chromic trifluoroethylene

- Chloropicrin (T)

 DHS Chemical of Interest

- Chloropicrin (T)

 DHS Chemical of Interest

- Chloroprene

 Peroxide Forming Chemical Class I

- 2-Chloropropene (T,I)

 Chromic oxide (T)

- 1-Chloro-2-propanone (T)

 Chromic sulfate (T)

- 2-Chlorovinyl)chloroarsine

 DHS Chemical of Interest

- 2-Chlorovinylidichloroarsine (T)

 Chromic trifluoride (T)

- Chloroprene

 Peroxide Forming Chemical Class I

- 2-Chloropropene (T,I)

 Chromic oxide (T)

- 1-Chloro-2-propanone (T)

 Chromic sulfate (T)

- tris(2-chlorovinyl)arsine

 DHS Chemical of Interest

- (2-chlorovinyl)chloroarsine, bis-

 DHS Chemical of Interest

- beta-Chlorovinylidichloroarsine (T)

 Chromic oxide (T)

- 2-Chlorovinylidichloroarsine

 DHS Chemical of Interest

- Chromic acid (T,C,I)

 Chromic oxide (T)

- Chromic anhydride (T,C,I)

 Chromic oxide (T)

- Chromic chloride (T)

 Chromic sulfite

- Chromic fluoride (T)

 Chromic trifluoride (T)

- Chromic fluoride (T)

 Chromic trifluoride (T)

- Chromic sulfite

 Chromic trifluoride (T)

- Chromic oxide (T)

 Chromic trifluoride (T)

- Chromium compounds (T,C,I)

 Chromic trifluoride (T)

- Chromium hydroxide (T)

 Chromic trifluoride (T)

- Chromium oxide (T)

 Chromic trifluoride (T)

- Chromium sulfite

 Chromic trifluoride (T)

- Chromium trichloride (T)

 Chromic trifluoride (T)

- Chromium trifluoroethylene

 Chromic trifluoride (T)

- Chromium trioxide (T,C,I)

 Chromic trifluoride (T)

- Chromyl chloride (T,C,I,R)

 Chromic trifluoride (T)

- Chrysene

 Chromic trifluoride (T)
- CMME (Methyl chloromethyl ether) (T,I)
 - Copper chlorotetrazole (I,R)
 - Copper compounds (T)
 - Cupric arsenite (T)
- Cobalt (powder) (T,I)
 - Copper cyanide
 - P-Listed (Mark w/ red P)
 - Cupric Cyanide
 - P-Listed (Mark w/ red P)
- Cobalt bromide (T)
 - Copper nitrate (T,I,R)
 - Cupric nitrate (T,I,R)
- Cobalt compounds (T)
 - Copper sulfate (T)
 - Cupric sulfate (T)
- Cobaltous bromide (T)
 - Coroxon (T)
- Cobalt chloride (T)
 - Cupriethylene diamine (T)
- Cobalt nitrate (T,I)
 - Coumafuryl (T)
 - Cupriethylene diamine (T)
- Cobalt resinate (T,I)
 - Coumatetralyl (T)
- Cobalt sulfate (T)
 - Creosote
- Cobaltous chloride (T)
 - Cresol (Cresylic acid)
- Cobaltous nitrate (T,I)
 - Cresent (Cresylic acid)
- Cobaltous resinate (T,I)
 - o-Cresol
- Cobaltous sulfate (T)
 - p-Cresol
- Cocculus (T)
 - m-Cresol
- Collodion (I,R)
 - p-Cresol
- Compound 1080 (T)
 - Crimidine (T)
 - Cyanophenophos (T)
- Compound 1836 (Diethyl chlorovinyl phosphate) (T)
 - Crotonaldehyde
 - DHS Chemical of Interest
 - O-para-Cyanophenyl-O-ethylphenyl phosphonothioate (T)
- Compound 4072 (2-Chloro-1-(2,4-dichloro-phenyl) vinyl diethyl phosphate) (T)
 - Crotonaldehyde, (E)-
 - DHS Chemical of Interest
 - Cyanuric triazine (I,R)
 - Cycloheptane (T,I)
- Copper acetoarsenite (T)
 - Cumene (I)
 - Peroxide Forming Chemical Class II
- Copper acetylide (I,R)
 - Cumene hydroperoxide (T)
- Copper arsenate (T)
 - m-Cumenyl methylcarbamate
 - Peroxide Forming Chemical Class II
- Copper arsenite (T)
- Copper chloride (T)
 - P-Listed (Mark w/ red P)
 - Cupric chloride (T)
- Copper chloroarsenite (T)
 - 2,5-Cyclohexadiene-1,4-dione
 - 2,5-Cyclohexadiene-1,4-dione
- Copper nitrate (T,I,R)
 - Cyclohexane (I)
 - Peroxide Forming Chemical Class II
 - Cyclohexane, 1,2,3,4,5,6-hexachloro-
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,5,5-hexachlorocyclohexane</td>
<td>Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexane (I)</td>
<td>- 2,4-D, salts & esters</td>
</tr>
<tr>
<td>Cyclohexane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexylamine</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexyltrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cycloheximide (T)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexyltrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexylamine</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Diacetylene</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Peroxide Forming Chemical Class II</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DBCP (1,2-Dibromo-3-chloropropane)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- DASANIT (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Dechlorane (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton (T)</td>
</tr>
<tr>
<td>Cyclohexeneorletrichlorosilane (T,C,R)</td>
<td>- Demeton-S-methyl sulfone</td>
</tr>
</tbody>
</table>
- m-Dichlorobenzene
- p-Dichlorobenzene
- 3,3'-Dichlorobenzidine and salts
- Dibenzoyl peroxide (T,I,R)
- 1,4-Dichloro-2-butene (I,T)
- Dichlorodifluoromethane
- Dichlorodimethylsilane (T,C,I,R)
- 1,2-Dichloroethane
- 1,2-Dichloroethene
- Dichloroether
- Dichloroethylarsine (I,R)
- 1,1-Dichloroethylene
- 1,2-Dichloroethylene
- Dichloroethyl ether
- Dichloroisocyanuric acid (T,I)
- Dichloroisopropyl ether
- Dichloromethane
- Dichloromethoxy ethane
- **Dichloromethyl ether**
 P-Listed (Mark w/ red P)
- Dichloromethylether (T)
 P-Listed (Mark w/ red P)
- 2,4-Dichlorophenol
- 2,6-Dichlorophenol

- **Dichlorophenylarsine**
 P-Listed (Mark w/ red P)

- 2,4-Dichlorophenoxyacetic acid (2,4-D) (T)
- 1,2-Dichloropropene (T,I)
- 1,3-Dichloropropene (T,I)
- 1,3-Dichloropropylene (T,I)
- 1,4-Dichloro-2-butene (I,T)
- 1,4-Dichloro-2-butene (I,T)
- Dichloro-S-triazine-2,4,6-tri-one (T,I)
- Dicumyl peroxide (I,T)
- Dicyclopentadiene
- 1,2:3,4-Diepoxybutane (I,T)
- 2-(Diethoxyphosphinylimino)-1,3-dithiolane (T)
- Diethyl chlorovinyl phosphate
- Diethyl N,N-dimethylphosphoramidate
- Diethyl Ether
- Diethyl N,N-dimethylphosphoramidate
- Diethyl Ether
- Diethyl Ether

DHS Chemical of Interest
- Diethyl phosphate
- N,N-Diethyl phosphoramidic dichloride
- Diethyl phthalate
- Diethylaluminum chloride (I,R)
- Diethylamine (T,I)
- N,N-(2-diethy lamino)ethanethiol
- **Diethyldithiophosphoric Side**
- O,O-Diethyl-S-carboethoxyethyl phosphorodithioate (T)
- Diethyldichlorosilane (T,C,I,R)
- Diethylene glycol, dicarbamate
- Diethylene glycol dimethyl ether

Peroxide Forming Chemical Class II
- 1,2:3,4-Diepoxybutane (I,T)
- 2-(Diethoxyphosphinylimino)-1,3-dithiolane (T)

Peroxide Forming Chemical Class II
- 1,4-Diethylene dioxide (T,I,R)
- o,o-diethyl S-[2-(dihy lamino)ethyl] phosphorothiolate
- Diethylene glycol dimethyl ether

DHS Chemical of Interest
- Diethylene glycol diminitrate (I,R)

43
- Diethylene triamine (T)

- Diethyleneglycol dinitrate

DHS Chemical of Interest

- 1,4-Diethyleneoxide

- O,O-Diethyl S-(N-ethoxycarbonyl-N-methylcarba-moyl-methyl) phosphorodithioate (T)

- O,O-Diethyl S-[2-(ethylthio)ethyl] phosphorodithioate (X)

P-Listed (Mark w/ red P)

- O,O-Diethyl S-[(Ethylthio)methyl] phosphorodithioate (T)

P-Listed (Mark w/ red P)

- Diethyleneglycol dinitrate

DHS Chemical of Interest

- O,O-Diethyl-0-para-nitrophenyl phosphate (T)

P-Listed (Mark w/ red P)

- O,O-Diethyl-0-para-nitrophenyl phosphorothioate (T)

P-Listed (Mark w/ red P)

- Diisopropyl benzene hydroperoxide (T,I)

- Diisopropyl ether (I,R)

Peroxide Forming Chemical Class III

- Diisopropyl peroxydicarbonate (T,C,I,R)

- Diisopropylfluoro-phosphate (DFP)

P-Listed (Mark w/ red P)

- 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa-chloro-1,4,4a,5,8,8a-hexahydro-, (1alpha,4alpha,4beta,5alpha,8beta,8abeta)-1

P-Listed (Mark w/ red P)

- Dimefox

(Tetramethylphosphorodiamidic fluoride) (T)

- 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa-chloro-1,4,4a,5,8,8a-hexahydro-, (1alpha,4alpha,4beta,5alpha,8beta,8abeta)-1

P-Listed (Mark w/ red P)

- 2,7:3,6-Dimethanonaphthalene, 2,3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1alpha,2beta,2alpha,3beta,6a,6beta,7alpha,7beta)-

P-Listed (Mark w/ red P)
- 2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1alpha,2beta,2abeta,3alpha,6alpha,6beta,7beta, 7alpha)-, & metabolites

P-Listed (Mark w/ red P)

- Dimethoate

P-Listed (Mark w/ red P)

- 3,3'-Dimethoxybenzidine

- Dimethoxytrychline (T)

P-Listed (Mark w/ red P)

- Dimethyl ethylphosphonate

DHS Chemical of Interest

- Dimethyl methylphosphonate

DHS Chemical of Interest

- Dimethyl nitrosoamine (T)

P-Listed (Mark w/ red P)

- Dimethyl phosphate

DHS Chemical of Interest

- N,N-dimethyl phosphoramidic dichloride

DHS Chemical of Interest

- Dimethyl sulfate

DHS Chemical of Interest

- Dimethylamine (I)

DHS Chemical of Interest

- Dimethylaminooazobenzene (T)

DHS Chemical of Interest

- p-Dimethylamino-azobenzene

- 4-(Dimethylamino)-3,5-dimethylphenyl methylocarbamate (T)

P-Listed (Mark w/ red P)

- 3-(Dimethylamino)-1-methyl-3-oxo-1-propenylidemethyl phosphate (T)

- N,N-(2-Dimethylamino)ethanethiol

DHS Chemical of Interest

- Dimethylarsinic acid (T)

- 7,12-Dimethylbenz[a]anthracene

- Dimethylcarbamoyl chloride

- Dimethylcarbamoyl azobenzene (T)

- 1,1-Dimethylhydrazine

DHS Chemical of Interest

- 1,2-Dimethylhydrazine

- O,O-Dimethyl-S-4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl phosphorodithioate (T)

- Dinitrogen tetroxide

DHS Chemical of Interest

- Dimethyl 3-hydroxyglutaconate dimethyl phosphate (T)

- Dimethyl nitrobenzene (2,4-;3,4-; 2,5-isomers) (T)

- O,O-Dimethyl-O-para-nitrophenylphosphorothioate (T)

P-Listed (Mark w/ red P)

- alpha, alpha-Dimethylphenethylamine

P-Listed (Mark w/ red P)

- 2,4-Dimethylphenol

- Dimethylphosphoramidic dichloridate

DHS Chemical of Interest

- 2,2-Dimethylpropane

DHS Chemical of Interest

- Dimethyl phthalate

P-Listed (Mark w/ red P)

- Dingu

DHS Chemical of Interest

- 2,4-Dinitroaniline (T)

- Dimethylamine (I)

- Dinitrobenzene (ortho, meta, para) (I,R)

- Dinitrochlorobenzene (I,R)

P-Listed (Mark w/ red P)

- 4,6-Dinitro-o-cresol, & salts

P-Listed (Mark w/ red P)

- Dinitrogen tetroxide

DHS Chemical of Interest

- Dinitroglycoluril

DHS Chemical of Interest
- Dinitrophenol
 DHS Chemical of Interest

- **2,4-Dinitrophenol**
 P-Listed (Mark w/ red P)

 - Dinitrophenol(2,3-;2,4-;2,6-isomers) (I,R)
 - 2,4-Dinitrophenylhydrazine (T,I,R)
 - Dinitroresorcinol
 DHS Chemical of Interest

- **2,4-Dinitro-6-sec-butylphenol (X)**
 P-Listed (Mark w/ red P)

 - Dinitrosobenzene
 DHS Chemical of Interest

 - 2,4-Dinitrotoluene
 - 2,6-Dinitrotoluene
 - Dinitrotoluene (2,4-;3,4-;3,5-isomers) (T,I,R)

- **Dinoseb**
 P-Listed (Mark w/ red P)

- Di-n-octyl phthalate

- **Dioxane**
 Peroxide Forming Chemical Class II

- 1,4-Dioxane
 Peroxide Forming Chemical Class II

- **p-Dioxane**
 Peroxide Forming Chemical Class II

- S,S-1,4-dioxane-2,3-diyl bis (O,O-diethyl phosphorodithioate) (T)

- **Dioxathion (T)**
- Dipentaerythritol hexanitrate (R)
- Diphenyl (T)
- Diphenylamine (T)
- Diphenylamine chloroarsine (T)
- Diphenyl dichlorosilane (T,I,R)
- Dithiobiuret
 P-Listed (Mark w/ red P)

- **Dioctylamine**
- Dioctylphosphoramide, octamethyl-
 P-Listed (Mark w/ red P)

- Diphenylamine
- Diphenyl-2-hydroxyacetic acid
 DHS Chemical of Interest

- **Dithione (T)**
- 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-
 O-[methylamino]-carbonyloxime

- **Dithionite**

- Dinoseb
 P-Listed (Mark w/ red P)

- Di-n-octyl phthalate

- **Dioxane**
 Peroxide Forming Chemical Class II

- 1,4-Dioxane
 Peroxide Forming Chemical Class II

- **p-Dioxane**
 Peroxide Forming Chemical Class II

- S,S-1,4-dioxane-2,3-diyl bis (O,O-diethyl phosphorodithioate) (T)

- **Disulfoton (T)**
 P-Listed (Mark w/ red P)

- Dipentaerythritol hexanitrate (R)
- Diphenyl (T)
- Diphenylamine (T)
- Diphenylamine chloroarsine (T)
- Diphenyl dichlorosilane (T,I,R)
- Dithiobiuret
 P-Listed (Mark w/ red P)

- **Disulfuryl chloride (T,C,R)**
- DI-SYSTON (T)
 P-Listed (Mark w/ red P)

- **DI-SYSTON (T)**

- **1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-O-[methylamino]-carbonyloxime**

- **Dithionite**

- Dinoseb
 P-Listed (Mark w/ red P)

- Di-n-octyl phthalate

- **Dioxane**
 Peroxide Forming Chemical Class II

- 1,4-Dioxane
 Peroxide Forming Chemical Class II

- **p-Dioxane**
 Peroxide Forming Chemical Class II

- S,S-1,4-dioxane-2,3-diyl bis (O,O-diethyl phosphorodithioate) (T)

- **Disulfuron (T)**
 P-Listed (Mark w/ red P)

- Dipentaerythritol hexanitrate (R)
- Diphenyl (T)
- Diphenylamine (T)
- Diphenylamine chloroarsine (T)
- Diphenyl dichlorosilane (T,I,R)
- Dithiobiuret
 P-Listed (Mark w/ red P)

- **Disulfuryl chloride (T,C,R)**
- DI-SYSTON (T)
 P-Listed (Mark w/ red P)

- **DI-SYSTON (T)**

- **1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-O-[methylamino]-carbonyloxime**

- **Dithionite**

- Dinoseb
 P-Listed (Mark w/ red P)

- Di-n-octyl phthalate

- **Dioxane**
 Peroxide Forming Chemical Class II

- 1,4-Dioxane
 Peroxide Forming Chemical Class II

- **p-Dioxane**
 Peroxide Forming Chemical Class II

- S,S-1,4-dioxane-2,3-diyl bis (O,O-diethyl phosphorodithioate) (T)

- **Disulfuron (T)**
 P-Listed (Mark w/ red P)

- Dipentaerythritol hexanitrate (R)
- Diphenyl (T)
- Diphenylamine (T)
- Diphenylamine chloroarsine (T)
- Diphenyl dichlorosilane (T,I,R)
- Dithiobiuret
 P-Listed (Mark w/ red P)

- **Disulfuryl chloride (T,C,R)**
- DI-SYSTON (T)
 P-Listed (Mark w/ red P)

- **DI-SYSTON (T)**

- **1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-O-[methylamino]-carbonyloxime**

- **Dithionite**

- Dinoseb
 P-Listed (Mark w/ red P)

- Di-n-octyl phthalate

- **Dioxane**
 Peroxide Forming Chemical Class II

- 1,4-Dioxane
 Peroxide Forming Chemical Class II

- **p-Dioxane**
 Peroxide Forming Chemical Class II

- S,S-1,4-dioxane-2,3-diyl bis (O,O-diethyl phosphorodithioate) (T)
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI (Ethyleneimine)</td>
<td>(T,I,R)</td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>(T)</td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Endothall</td>
<td>(T)</td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Endothion</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>Endrin</td>
<td>(T)</td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Endrin, & metabolites</td>
<td></td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td></td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Epinephrine</td>
<td></td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>EPN (O-Ethyl O-paranitrophenyl phenylphosphonothioate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[methylenebis(oxy)]bis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis-(I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Ethanediamine, N,N-dimethyl-N′-2-pyridinyl-N′-(2-thienylmethyl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[methylenebis(oxy)]bis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis-(I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Ethanediamine, N,N-dimethyl-N′-2-pyridinyl-N′-(2-thienylmethyl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[methylenebis(oxy)]bis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis-(I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Ethanediamine, N,N-dimethyl-N′-2-pyridinyl-N′-(2-thienylmethyl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[methylenebis(oxy)]bis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis-(I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1′-oxybis[2-chloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2,2-tetrachloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,1-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1,2-trichloro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Ethanediamine, N,N-dimethyl-N′-2-pyridinyl-N′-(2-thienylmethyl)-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Ethyl chloroformate (T,C,I,R)

Ethyl cyanide
P-Listed (Mark w/ red P)

- Ethyl ether (I)
Peroxide Forming Chemical Class II
DHS Chemical of Interest

- Ethyl formate (T,I)

- Ethyl mercaptan (T,I,R)
DHS Chemical of Interest

- Ethyl methacrylate

- Ethyl methanesulfonate

- O-Ethyl methyl phosphoryl N,N-diisopropyl thiocholine (T)

- Ethyl nitrate (I,R)

- Ethyl nitrite (I,R)
DHS Chemical of Interest

- Ethyl phosphonyl dichloride
DHS Chemical of Interest

- Ethyl phosphonyl difluoride
DHS Chemical of Interest

- Ethyl propionate (I)

- Ethyldichloroarsine (I,R)

- Ethyldichlorosilane (T,C,I,R)

- O-Ethyl-S,S-dipropyl phosphorodithioate (T)

- Ethylamine (T,I)
DHS Chemical of Interest

- Ethylbenzene (T,I)

- Ethyldiethanolamine
P-Listed (Mark w/ red P)

DHS Chemical of Interest

- o-ethyl-N,N-demethylphosphoramido-cyanate

- o-ethyl-o-2-diisopropylaminoethyl methyl phosphonite
DHS Chemical of Interest

- O ethyl-S-2-diisopropylaminoethyl methyl phosphonothiolate
DHS Chemical of Interest

- Ethylene
DHS Chemical of Interest

- Ethylene cyanohydrin (I,R)

- Ethylene diamine (T)

- Ethylene glycol dimethyl ether
Peroxide Forming Chemical Class II

- Ethylene glycol dinitrate (R)

- Ethylene glycol monoethyl ether

- Ethylene oxide (I,T)
DHS Chemical of Interest

- Ethylenebisdithiocarbamic acid, salts & esters

- Ethylenediamine
DHS Chemical of Interest

- Ethyleneimine (T,I,R)
P-Listed (Mark w/ red P)

DHS Chemical of Interest

- Ethylenethiourea

- Ethylidene dichloride

- Ethylphenyldichlorosilane (T,C,R)

- O-Ethyl O-para-nitrophenyl phenylphosphonothioate (T)

- O-Ethyl-S-phenylethyl phosphonodithio-ate (T)

- Ethylphosphonothioic dichloride
DHS Chemical of Interest

- S-[2-(ethyl-sulfonyl) ethyl] O,O-dimethyl phosphorothioate (T)

- Ethyltrichlorosilane (I,R)
DHS Chemical of Interest

- EXOTHION (T)

- FAC (Prothoate) (T)
P-Listed (Mark w/ red P)

- Fensulfothion (T)

- Ferric arsenate (T)

- Ferric chloride (T,C)

- Ferrous arsenate (T)

- Fishberry (T)

- Fluoboric acid (T,C)

- Fluoranthen

- Fluoride salts (T)

- Fluorine
<table>
<thead>
<tr>
<th>Chemical Class</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Listed</td>
<td>Fluoroacetamide</td>
<td>(Mark w/ red P)</td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fluoroacetanilide</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>- Fluoroacetic acid and salts</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>- Fluoroacetic acid, sodium salt</td>
<td>(P)</td>
<td></td>
</tr>
<tr>
<td>P-Listed</td>
<td>Fuming sulfuric acid</td>
<td>(T,C,R)</td>
</tr>
<tr>
<td>- Glycidylaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Listed</td>
<td>Glycol dinitrate</td>
<td>(R)</td>
</tr>
<tr>
<td>P-Listed</td>
<td>Peroxide Forming Chemical Class II</td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Furan (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Furan, tetrahydro</td>
<td>(I)</td>
<td></td>
</tr>
<tr>
<td>P-Listed</td>
<td>Peroxide Forming Chemical Class II</td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2-Furancarboxaldehyde</td>
<td>(I)</td>
<td></td>
</tr>
<tr>
<td>- 2,5-Furandione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Guanidine nitrate</td>
<td>(I,R)</td>
<td></td>
</tr>
<tr>
<td>- Gold cyanate</td>
<td>(R)</td>
<td></td>
</tr>
<tr>
<td>- Gold fulminate</td>
<td>(R)</td>
<td></td>
</tr>
<tr>
<td>- Guanidinoguanosynitrosamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Guanyl nitrosaminoguanyltetrazene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Guanilne</td>
<td>(Tetramethylphosphoro-</td>
<td></td>
</tr>
<tr>
<td>- Hafnium</td>
<td>(I,T,R)</td>
<td></td>
</tr>
<tr>
<td>- Hanane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Heptachlor</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>P-Listed</td>
<td>Heptane (and isomers)</td>
<td>(T,I)</td>
</tr>
<tr>
<td>Contains Mercury (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Glucose, 2-deoxy-2-[[methyleneamino]carbonyl]amino]-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- n-Heptane</td>
<td>(T,I)</td>
<td></td>
</tr>
<tr>
<td>- 1-Heptene</td>
<td>(T,I)</td>
<td></td>
</tr>
<tr>
<td>FOSTION</td>
<td>Formformate hydrochloride</td>
<td>(T)</td>
</tr>
<tr>
<td>P-Listed</td>
<td>Formformate hydrochloride</td>
<td>(T)</td>
</tr>
<tr>
<td>- Formic acid</td>
<td>(C,T)</td>
<td></td>
</tr>
<tr>
<td>- Formparanate</td>
<td>(P)</td>
<td></td>
</tr>
<tr>
<td>- FOSTION</td>
<td>Formparanate</td>
<td>(T)</td>
</tr>
<tr>
<td>P-Listed</td>
<td>Formparanate</td>
<td>(Mark w/ red P)</td>
</tr>
<tr>
<td>Contains Mercury (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Formaldehyde</td>
<td>(T,I)</td>
<td></td>
</tr>
<tr>
<td>- Formaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Gasoline</td>
<td>(I)</td>
<td></td>
</tr>
<tr>
<td>- GB (O-Isopropyl methyl phosphoryl fluoride)</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>- Guthion</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>- Hafnium</td>
<td>(I,T,R)</td>
<td></td>
</tr>
<tr>
<td>- Hanane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Heptachlor</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>P-Listed</td>
<td>Heptane (and isomers)</td>
<td>(T,I)</td>
</tr>
<tr>
<td>Contains Mercury (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Glucopyranose, 2-deoxy-2-[(3-methyl-3-nitrosoureido)-,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- D-Glucose, 2-deoxy-2-[D-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- n-Heptane</td>
<td>(T,I)</td>
<td></td>
</tr>
<tr>
<td>- 1-Heptene</td>
<td>(T,I)</td>
<td></td>
</tr>
</tbody>
</table>
- HETP (Hexaethyl tetraphosphate) (T)

 P-Listed (Mark w/ red P)

- Hexachlorobenzene
- Hexachlorobutadiene

- 1,2,3,4,5,6-
 Hexachlorocyclohexane
 (Lindane) (T)

- Hexachlorocyclopentadiene

- 1,2,3,4,10,10-
 Hexachloro-6,7-epoxy-1,4,4a,5,6,7, 8,8a-
 octahydro-1,4-endono-endo-5,8-
 dimethanonaphthlene (T)
 P-Listed (Mark w/ red P)

- Hexachloroethane
- Hexachloropropene

- Hexadecyltrichlorosilane
 (T,C,R)

- Hexaethyl tetraphosphate
 (T)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest

- Hexamethylenediamine (T)

- n-Hexane (and isomers) (T,I)

- Hexanitrodiphenyl amine (I,R)

- Hydrobromic acid (T,C,R)

- Hydrocyanic acid (T,I,R)

- Hydrofluoric acid (C,T,R)

- Hydrofluorosilicic acid (T,C)

- Hydrogen

- Hydrazine azide (I,R)

- Hydrazine (T,I)

- Hydrazine, 1,2-dimethyl-

- Hydrazine, 1,1-dimethyl-

- Hydrazine, 1,2-dimethyl-

- Hydrazine, 1,2-diphenyl-

- Hydrazinecarbothioamide
 P-Listed (Mark w/ red P)

- Hydrazine, methyl-
 P-Listed (Mark w/ red P)

- Hydrazoic acid (I,R)

- Hydriodic acid (T,C,R)

- Hydrochloric acid (T,C,R)

- Hydrochloric acid (conc.
 37% or greater)

- Hydrofluoric acid (C,T,R)

- Hydrofluorosilicic acid (T,C)

- Hydrogen

- Hydrogen azide (I,R)

- Hydrogen bromide (T,C,R)
Hydrogen bromide (anhydrous)
DHS Chemical of Interest

- Hydrogen chloride (T,C,R)
- Hydrogen chloride (anhydrous)
DHS Chemical of Interest

- Hydrogen cyanide (T,I,R)
P-Listed (Mark w/ red P)

- Hydrogen fluoride (C,T,R)
DHS Chemical of Interest

- Hydrogen iodide (T,C,R)
DHS Chemical of Interest

- Hydrogen peroxide (T,C,I,R)
- Hydrogen peroxide (conc. 35% or greater)
DHS Chemical of Interest

- Hydrogen phosphide
P-Listed (Mark w/ red P)

- Hydrogen selenide (T,I)
DHS Chemical of Interest

- Hydrogen sulfide
DHS Chemical of Interest

- Hydroperoxide, 1-methyl-1-phenylethyl-(R)
- 3-Hydroxy-N-cis-crotonamide (T)
- beta-Hydroxypropionitrile (I,R)
- Hypochlorite compounds (T,C,I,R)
- 2-Imidazolidinethione
- Indeno[1,2,3-cd]pyrene

- Indium (T)
- Indium compounds (T)
- Iodine monochloride (T,C,R)
DHS Chemical of Interest

- Iodine pentfluoride
DHS Chemical of Interest

- Iron, pentacarboxyl-
DHS Chemical of Interest

- Iron arsenate (T)
- Iron (III) chloride (T,C)
- Isobenzan (T)
- 1,3-Isobenzofurandione
- Isobutane
DHS Chemical of Interest

- Isobutyl alcohol (I,T)
- Isobutyronitrile
DHS Chemical of Interest

- Isodrin
P-Listed (Mark w/ red P)

- Isolan
P-Listed (Mark w/ red P)

- Isooctane (T,I)
- Isooctene (mixture of isomers) (I)
- Isopentane (I)
DHS Chemical of Interest

- Isoprene (T,I,R)
DHS Chemical of Interest

- Isopropyl alcohol (T,I)
- Isopropyl benzene
- Isopropyl chloroformate
Peroxide Forming Chemical Class III

- Isopropyl ether
- o-isopropyl methylphosphonochloridate
DHS Chemical of Interest

- o-isopropyl methylphosphonofluoridate
DHS Chemical of Interest

- O-Isopropyl methyl phosphonyl fluoride (T)
- Isopropyl percarbonate(T,C,I,R)
- Isopropylamine (T,I)
DHS Chemical of Interest

- 3-Isopropylphenyl N-methylcarbamate (T)
P-Listed (Mark w/ red P)

- Isopropylphosphonothioic dichloride
DHS Chemical of Interest

- Isopropylphosphonyldifluoride
DHS Chemical of Interest

- Isosafrole
- 3(2H)-Isoxazolone, 5- (aminomethyl) -
 P-Listed (Mark w/ red P)
 - Lead orthoarsenate (T)
 - Lead oxide (T)
 - London purple, Mixture of arsenic trioxide, aniline, lime, and ferrous oxide (T)
 - Lead phosphate
 - Lead styrhinate (I,R)
 DHS Chemical of Interest
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest

- Kepone (T)
- LAH (Lithium aluminum Hydride)(C,I,R)
- LANNATE (T) - Lead oxide (T)
 P-Listed (Mark w/ red P)
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest
 - Lead subacetate
 - Lead trinitroresorcinate (I,R)
 - Lead styphnate (I,R)
 DHS Chemical of Interest

- Lasiocarpine
- Lauroyl peroxide (T,C,I,R)
- Lead acetate
- Lead azide
 DHS Chemical of Interest
- Lead compounds (T)
- Lead acetate (T)
- Lead arsenate (T)
- Lead arsenite (T)
- Lead azide (I,R)
 DHS Chemical of Interest
- Lead carbonate (T)
- Lead chlorite (I,R)
- Lead cyanide (T)
- Lead 2,4-dinitroresorcinate (I,R)
- Lead mononitroresorcinate (I,R)
- Lead nitrate (T,I)

- Listed (Mark w/ red P)
- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest

- Lead oxide (T)
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Lead subacetate
- Lead trinitroresorcinate (I,R)
- Lead styphnate (I,R)
 DHS Chemical of Interest
- Manganese bromide (T)
- Manganese chloride (T)

Manganese, bis(dimethylcarbamodithioato-o-S,S'), P-Listed (Mark w/ red P)
- para-Menthane hydroperoxide (I)

Manganese dimethylidithiocarbamate, P-Listed (Mark w/ red P)
- Manganese methylcyclopentadienyl tricarbonyl (T)

- Manganese nitrate (T,I)
- Manganous arsenate (T)
- Manganous bromide (T)
- Manganous chloride (T)
- Manganous nitrate (T,I)

Mannitol hexanitrate (R), DHS Chemical of Interest
- Mercuric cyanate (I,R)

- MARLATE (T)
- Mayer's reagent (T)

- MCA (Monochloracetic acid) (T,C)
- MECARBAM (T)

- MDEA, DHS Chemical of Interest
- Medinoterb acetate (T)
- MEK (Methyl ethyl ketone) (I,T)

- Melphalan
- Memtetrahydrophthalic anhydride (T)
- Mercuric oxide (red and yellow) (T,I)

Contains Mercury (Mark w/ red P)
- Mercuric oxycyanide (I,R)
Contains Mercury (Mark w/ red P)
- Mercuric acetate (T)
Contains Mercury (Mark w/ red P)
- Mercuric ammonium chloride (T)
Contains Mercury (Mark w/ red P)

- Mercuric benzoate (T)
Contains Mercury (Mark w/ red P)
- Mercuric salicylate (T)
Contains Mercury (Mark w/ red P)
- Mercuric bromide (T)
Contains Mercury (Mark w/ red P)
- Mercuric subsulfate (T)
Contains Mercury (Mark w/ red P)
- Mercuric chloride (T)
Contains Mercury (Mark w/ red P)
- Mercuric sulfate (T)
Contains Mercury (Mark w/ red P)
- Mercuric cyanate (I,R)
Contains Mercury (Mark w/ red P)
- Mercurous bromide (T)
Contains Mercury (Mark w/ red P)
- Mercurous iodide (T)
Contains Mercury (Mark w/ red P)
- Mercurous gluconate (T)
Contains Mercury (Mark w/ red P)
- Mercurous iodide (T)
Contains Mercury (Mark w/ red P)
- Mercurous nitrate (I,R)
Contains Mercury (Mark w/ red P)
- Mercurous oxide (T)
Contains Mercury (Mark w/ red P)

- Mercurous sulfate (T)
Contains Mercury (Mark w/ red P)

- Mercury
Contains Mercury (Mark w/ red P)

- Mercury acetate (T)
Contains Mercury (Mark w/ red P)

- Mercury ammonium chloride (T)
Contains Mercury (Mark w/ red P)

- Mercury benzoate (T)
Contains Mercury (Mark w/ red P)

- Mercury bromide (T)
Contains Mercury (Mark w/ red P)

- Mercury chloride (T)
Contains Mercury (Mark w/ red P)

- Mercury compounds (T)
Contains Mercury (Mark w/ red P)

- Mercury cyanide (I,R)
Contains Mercury (Mark w/ red P)

- Mercury, (acetato-Ophenyl)-
P-Listed (Mark w/ red P)
Contains Mercury (Mark w/ red P)

- Mercury bisulfate (T)
Contains Mercury (Mark w/ red P)

- Mercury fulminate (R,T)
P-Listed (Mark w/ red P)
Contains Mercury (Mark w/ red P)

- Mercury iodide (T)
Contains Mercury (Mark w/ red P)

- Mercury nitrate (T,I)
Contains Mercury (Mark w/ red P)

- Mercury nucleate (T)
Contains Mercury (Mark w/ red P)

- Mercury oleate (T)
Contains Mercury (Mark w/ red P)

- Mercury sulfate (T)
Contains Mercury (Mark w/ red P)

- Mercury thiocyanate (T)
Contains Mercury (Mark w/ red P)

- METAISOSYSTOX-SULFON (T)

- Metal carbonyls (T)

- Metal hydrides (I,R)

- Metal powders (T,I)

- Methacrylonitrile (I, T)
DHS Chemical of Interest

- Methanal (T,I)

- Methanamine, N-methyl- (I)

- Methanamine, N-methyl-N-nitroso-
P-Listed (Mark w/ red P)

- Methanesulfonic acid, ethyl ester

- Methanethiol (T,I)

- Methanethiol, trichloro-
P-Listed (Mark w/ red P)

- Methanimidamide, N,N-dimethyl-N'-[3-([(methylamino)arbonyl]oxy)phenyl]-, monohydrochloride
P-Listed (Mark w/ red P)

- Methane
DHS Chemical of Interest

- Methane, bromo-

- Methane, chloro- (I, T)

- Methane, chloromethoxy-

- Methane, dibromo-

- Methane, dichloro-

- Methane, dichlorodifluoro-

- Methane, iodo-

- Methane, isocyanato-
P-Listed (Mark w/ red P)

- Methane, oxybis[chloro-
P-Listed (Mark w/ red P)

- Methane, tetrachloro-

- Methane, tetranitro- (R)
P-Listed (Mark w/ red P)

- Methane, tribromo-

- Methane, trichloro-

- Methane, trichlorofluoro-

- Methanesulfonic acid, ethyl ester

- Methanethiol (T,I)

- Methanethiol, trichloro-
P-Listed (Mark w/ red P)

- Methanimidamide, N,N-dimethyl-N'-[3-([(methylamino)arbonyl]oxy)phenyl]-, monohydrochloride
P-Listed (Mark w/ red P)
- Methanimidamide, N,N-dimethyl-N'-[2- methyl-4-[(methylamino)carbonyl]oxy]phenyl)-
P-Listed (Mark w/ red P)

- 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10, 10-hexachloro-1,5,5a,6,9,9a-hexahydro-3-oxide
P-Listed (Mark w/ red P)

- 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-
P-Listed (Mark w/ red P)

- Methanoic acid (T,C)

- 4,7-Methano-1H-indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-

- Methanol (I)

- Methoxychlor (T)

- Methoxyethylmercuric chloride (T)
Contains Mercury (Mark w/ red P)

- S-[(5-Methoxy-4-oxo-4H-pyran-2-yl) methyl] 0,0-dimethyl phosphorodithioate (T)

- S-[(5-Methoxy-2-oxo-1,3,4-thiadiazol3 (2H)-yl) methyl] -0, 0-dimethyl phosphorodithioate (T)

- S-Methyl-N-((methyl-carbamoyl) oxy)thioacetimidate (T)
P-Listed (Mark w/ red P)

- Methyl acetate (T,I)

- Methyl acetone (Mixture of acetone, methyl acetate, and methylalcohol) (T,I)

- Methyl acetylene Peroxide Forming Chemical Class II

- Methyl alcohol (I)

- Methyl bromide (T)
DHS Chemical of Interest

- Methyl butyl ether (and isomers) (T,I)

- Methyl butyrate (and isomers) (T,I)

- Methyl chloride (I,T)
DHS Chemical of Interest

- Methyl chloroform

- Methyl chloroformate (T,I,R)
DHS Chemical of Interest

- Methyl chloromethyl ether (T,I)

- Methyl cyclopentane Peroxide Forming Chemical Class II

- Methyl ether DHS Chemical of Interest

- Methyl ethyl ether (T,I)

- Methyl ethyl ketone (I,T)

- Methyl ethyl ketone peroxide (R,T)

- Methyl formate (T,I)
DHS Chemical of Interest

- Methyl hydrazine (T,I)
P-Listed (Mark w/ red P)
DHS Chemical of Interest

- Methyl iodide

- Methyl isobutyl ketone (I)
Peroxide Forming Chemical

- Methyl isopropenyl ketone (T,I)

- Methyl mercaptan (T,I)

- Methyl methacrylate (T,I)

- Methyl methoxychlor (T)
Peroxide Forming Chemical Class I

- Methyl mercaptan (T,I)

- Methyl methacrylate (T,I)
DHS Chemical of Interest

- S-Methyl-N-((methyl-carbamoyl) oxy)thioacetimidate (T)
P-Listed (Mark w/ red P)

- Methyl parathion (T)
P-Listed (Mark w/ red P)

- Methyl pentanoate (and isomers) (I)

- Methyl phosphonyldichloride
DHS Chemical of Interest

- Methyl phosphonyldifluoride
DHS Chemical of Interest

- Methyl propionate (I)
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>DHS Status</th>
<th>Chemical Name</th>
<th>DHS Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl propyl ketone (and isomers) (T,I)</td>
<td>DHS Chemical of Interest</td>
<td>Methylcyclohexane (T,I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl thiocyanate</td>
<td>DHS Chemical of Interest</td>
<td>Methyl dichloroarsine (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl sulfate</td>
<td>DHS Chemical of Interest</td>
<td>Methyl dichlorosilane (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl valerate (I)</td>
<td>DHS Chemical of Interest</td>
<td>Methyldichlorosilane (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl vinyl ketone (T,I)</td>
<td>DHS Chemical of Interest</td>
<td>Methyl diethanolamine</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl yellow (Dimethylaminoazobenzene) (T)</td>
<td>DHS Chemical of Interest</td>
<td>Methylene bromide</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methylaluminum sesquibromide (I,R)</td>
<td>2-Methyl propene</td>
<td>Methylene chloride</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methylaluminum sesquichloride (I,R)</td>
<td>Methylthiocyanate</td>
<td>Methylene chloride</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methylamline (T,I)</td>
<td>Methylthiouaric</td>
<td>4,4-Methylene bis(2-chloroaniline) (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>n-Methylaniline (T)</td>
<td>Methylthiouaric</td>
<td>4,4'-Methylenebis(2-chloroaniline)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>2-Methylaziridine (T,I)</td>
<td>Methylthiouaric</td>
<td>2-Methylbutadiene (I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methyl benzene (T,I)</td>
<td>Methylthiouaric</td>
<td>2-Methyl-1,3-butadiene (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>1-Methylbutadiene (I)</td>
<td>Methylthiouaric</td>
<td>2-Methyl-1,3-butadiene (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>2-Methyl-1,3-butadiene (T,I,R)</td>
<td>Methylthiouaric</td>
<td>2-Methyl-2(methylthio) propionaldehyde-O-</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>2-Methylbutane (I)</td>
<td>Methylthiouaric</td>
<td>(methylcarbamoyl) oxime (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>2-Methyl-1-butene (I)</td>
<td>Methylthiouaric</td>
<td>2-Methyl-2-pentanone (I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>2-Methyl-1-butene (I)</td>
<td>Methylthiouaric</td>
<td>Methylphenyl dichlorosilane</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>3-Methyl-1-butene (I)</td>
<td>Methylthiouaric</td>
<td>Methyl phosphonothioic dichloride</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>3-Methyl-3-butene-2-one (T,I)</td>
<td>Methylthiouaric</td>
<td>Molybdenum (powder) (I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methylcholangrene</td>
<td>Methylthiouaric</td>
<td>Molybdenum anhydride (X)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Methylchlorosilane</td>
<td>Methylthiouaric</td>
<td>Molybdenum trioxide (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Chemical</td>
<td>Description</td>
<td>DHS Chemical of Interest</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Molybdic acid and salts (T)</td>
<td>- 1-Naphthalenol, methylcarbamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monochloroacetic acid (T,C)</td>
<td>- 1,4-Naphthoquinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monochloroacetone (T)</td>
<td>- alpha-Naphthylamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monofluorophosphoric acid (T,C)</td>
<td>- beta-Naphthylamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monomethyl hydrazine (T,I)</td>
<td>- alpha-Naphthylthiourea</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
</tr>
<tr>
<td>Muriatic Acid (T,C,R)</td>
<td>- 4-NBP (4-Nitrobiphenyl) (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-Mustard (T)</td>
<td>- Nemagon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- O-Mustard (T)</td>
<td>- Neohexane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-NA (1-Naphthalenamine)</td>
<td>- NIALATE (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-NA (2-Naphthalenamine)</td>
<td>- Nickel (powder) (T,I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nack (Sodium potassium alloy) (C,I,R)</td>
<td>- Nickel acetate (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphtite (I,R)</td>
<td>- Nickel antimonide (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphtha (of petroleum or coal tar origin) (T,I)</td>
<td>- Nickel arsenate (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Naphthalenamine</td>
<td>- Nickel carbonyl (T)</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
</tr>
<tr>
<td>2-Naphthalenamine</td>
<td>- Nickel cyanide (T)</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
</tr>
<tr>
<td>Naphthalenamine, N,N'-bis(2-chloroethyl)-</td>
<td>- Nickel (T,I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>- Nickel chloride (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene, 2-chloro-</td>
<td>- Nickel nitrate (T,I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Naphthalenedione</td>
<td>- Nickel selenide (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,7-Naphthalenedisulfonic acid, 3,3'-(3,3'-dimethyl[1,1'-biphenyl]-4,4'-dial)bis(azo)bis[5-amino-4-hydroxy]-tetrasodium salt</td>
<td>- Nickel sulfate (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nickel tetracarbonyl (T)</td>
<td>- Nickel tetracarbonyl (T)</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
</tr>
<tr>
<td>- NITAN 10,242 (T)</td>
<td>- Nitrocalcite (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nickel oxide</td>
<td>- Nitrocarbazole (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Nitroaniline</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- p-Nitroaniline</td>
<td>- Nitrobenzene (I,T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen dioxide</td>
<td>- Nitrobenzol (I,T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen dioxide</td>
<td>- 5-Nitrobenzotriazol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric oxide</td>
<td>- 4-Nitrophenol (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric oxide</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric acid (T,C,I)</td>
<td>- Nitrocarbenzo (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrocarbamide</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrocellulose</td>
<td>- Nitrocarbamide (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric acid, thallium(1+) salt</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric acid</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric acid, thallium(1+) salt</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitric acid</td>
<td>- Nitrocellulose (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Listed (Mark w/ red P)</td>
<td>- N-Nitroso-N-ethylurea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen mustard (T,C)</td>
<td>- Nitrosoguanidine (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen mustard hydrochloride</td>
<td>- N-Nitroso-N-methylurea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td>- Octadecyltrichlorosilane (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen oxide NO</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- N-Nitrosomethylvinylamine</td>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen tetroxide (T,I)</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrogen trioxide</td>
<td>- N-Nitrosopiperidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td>- Octalite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitroglycerine (T,I,R)</td>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrolyamine</td>
<td>- 5-Nitro-o-toluidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitroguanidine</td>
<td>- Nitrotiazolone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitromannite (R)</td>
<td>- Nitroxyline (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td>- Octonol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitromethane</td>
<td>- Nitroxylool (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHS Chemical of Interest</td>
<td>- Octyl peroxide (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrophenol (ortho, meta, para) (T)</td>
<td>- 1-Nonene (T,I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2-Nitropropane (I,T)</td>
<td>- 1-Nonylene (and isomers) (T,I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- N-Nitrosodi-n-butylamine</td>
<td>- Nonylchlorosilane (I,R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- N-Nitrosodienanthalamine</td>
<td>DHS Chemical of Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- N-Nitrosodiethylamine</td>
<td>- OCMB (ortho-Chlorobenzyldiene malonitrile) (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- N-Nitrosodimethylamine (T)</td>
<td>- Osmium compounds (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Listed (Mark w/ red P)</td>
<td>Osmium oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Listed (Mark w/ red P)</td>
<td>P-Listed (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran (T)</td>
<td>- Osmium Tetroxide P-Listed (Mark w/ red P)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid
 P-Listed (Mark w/ red P)
 - Oxalic acid (T)
 - Oxamyl
 P-Listed (Mark w/ red P)
 - 1,2-Oxathiolane, 2,2-dioxide
 - 2H-1,3,2-Oxazaphosphorin-2-amine, N,N-bis(2-chloroethyl)tetrahydro-, 2-oxide
 - Oxirane (I,T)
 - Oxiranecarboxyaldehyde
 - Oxirane, (chloromethyl)-2 Paraldehyde
 - Oxygen difluoride (T,C,R)
 DHS Chemical of Interest
 - Para-oxon (T)
 - Paramethane hydroperoxide (I)
 - Parathion (T)
 P-Listed (Mark w/ red P)
 - Paris green (Copper acetoarsenite) (T)
 - PCB (Polychlorinated biphenyls)
 - PCP (Pentachlorophenol) (T)
 - PENSAL (T)
 - Pentaborane (T,I,R)
 - Pentachlorobenzene
 - Pentachloroethane
 - Pentachloronitrobenzene (PCNB)
 - Pentachlorophenol (T)
 - 1,3-Pentadiene
 DHS Chemical of Interest
 - Pentaerythritol tetranitrate (R)
 DHS Chemical of Interest
 - Perchloric acid (T,C,I,R)
 - Peroxyacetic acid (T,C,I,R)
 DHS Chemical of Interest
 - Peroxyacetic acid (T,C,I,R)
 - Phenol, 2-chloro-
- Phenol, 2-cyclohexyl-4,6-dinitro-
P-Listed (Mark w/ red P)
- Phenol, 2,4-dichloro-
- Phenol, 2,6-dichloro-
- Phenol, 4,4’-(1,2-diethyl-1,2-ethenediy)bis-, (E)-
- Phenol, 2,4-dimethyl-
- Phenol, 4-(dimethylamino)-3,5-dimethyl-, methylcarbamate (ester)
P-Listed (Mark w/ red P)
- Phenol, (3,5-dimethyl-4-(methylthio))-methylcarbamate
P-Listed (Mark w/ red P)
- Phenol, 2,4-dinitro-
P-Listed (Mark w/ red P)
- Phenol, methyl-
- Phenol, 2-methyl-4,6-dinitro-, & salts
P-Listed (Mark w/ red P)
- Phenol, 2,2’-methylenebis[3,4,6-trichloro-
- Phenol, 2-(1-methylethoxy)-, methylcarbamate
- Phenol, 3-(1-methylethyl)-, methyl carbamate
P-Listed (Mark w/ red P)
- Phenol, 3-methyl-5-(1-methylethyl)-, methyl carbamate
P-Listed (Mark w/ red P)
- Phenol, 2-(1-methylpropyl)-4,6-dinitro-
P-Listed (Mark w/ red P)
- Phenol, 4-nitro-
- Phenol, pentachloro-
- Phenol, 2,3,4,6-tetrachloro-
- Phenol, 2,4,5-trichloro-
- Phenol, 2,4,6-trichloro-
- Phenol, 2,4,6-trinitro-, ammonium salt(R)
P-Listed (Mark w/ red P)
- L-Phenylalanine, 4-[bis(2-chloroethyl)amino]-
- N-Phenylaniline (T)
- Phenylbenzene (T)
- Phenyl dichloroarsine (T)
- Phenylethylamine (T)
- Phenylethylamine (T,I)
- Phenylhydrazine hydrochloride (T)
- Phenylmercury acetate
P-Listed (Mark w/ red P)
Contains Mercury (Mark w/ red P)
- Phenylphenol (T)
- Phenylthiourea
P-Listed (Mark w/ red P)
- Phenyldichloroarsine (T)
- Phenylenediamine (T)
- Phenylenediamine (T)
- Phenylenediamine (T)
- Phenylenediamine (T)
- Phosphoric acid, lead(2+) salt (2:3)
- Phosphoric anhydride (C,I)
- Phosphoric chloride (T,C,I,R)
- Phosphoric sulfide (T,C,I,R)
- Phosphorodithioic acid, O,O-diethyl S-[2-(ethylthio)ethyl] ester
P-Listed (Mark w/ red P)
- Phosphorodithioic acid, O,O-diethyl S-[ethylthio)methyl] ester
P-Listed (Mark w/ red P)
- Phosphoric acid, 4-nitrophenyl ester
P-Listed (Mark w/ red P)
- Phosphorofluoridic acid, bis(1-methylethyl) ester
P-Listed (Mark w/ red P)
- Phosgene (I,R)
P-Listed (Mark w/ red P)
DHS Chemical of Interest
- Phosphamic acid (T)
P-Listed (Mark w/ red P)
DHS Chemical of Interest
- Phosphoric acid (C)
- Phosphoric acid, diethyl 4-nitrophenyl ester
P-Listed (Mark w/ red P)
- Phosphoric acid, lead(2+) salt (2:3)
- Phosphoric anhydride (C,I)
- Phosphoric chloride (T,C,I,R)
- Phosphoric sulfide (T,C,I,R)
- Phosphorodithioic acid, O,O-diethyl S-[2-(ethylthio)ethyl] ester
P-Listed (Mark w/ red P)
- Phosphorodithioic acid, O,O-diethyl S-[ethylthio)methyl] ester
P-Listed (Mark w/ red P)
- Phosphoric acid, O,O-diethyl S- methyl ester
- Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester
P-Listed (Mark w/ red P)
- Phosphoric acid, O,O-dimethyl S- methyl ester
- Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester
P-Listed (Mark w/ red P)
- Phosphorofluoridic acid, bis(1-methylethyl) ester
P-Listed (Mark w/ red P)
- Phosphorothioic acid, O,O-diethyl O-(4-nitrophenyl) ester
 P-Listed (Mark w/ red P)

- Phosphorothioic acid, O,O-diethyl O-pyrazinyl ester
 P-Listed (Mark w/ red P)

- Phosphorothioic acid, O-[4-[(dimethylamino)sulfonyl]phenyl] O,O-dimethyl ester
 P-Listed (Mark w/ red P)

- Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester
 P-Listed (Mark w/ red P)

- Phosphorus
 DHS Chemical of Interest

- Phosphorus (amorphous, red)
 (T,I,R)
 DHS Chemical of Interest

- Phosphorus (white or yellow)
 (T,I,R)
 DHS Chemical of Interest

- Phosphorus oxybromide
 (T,C,R)

- Phosphorus oxychloride
 (T,C,R)
 DHS Chemical of Interest

- Phosphorus pentabromide
 DHS Chemical of Interest

- Phosphorus pentachloride
 (T,C,I,R)
 DHS Chemical of Interest

- Phosphorus pentasulfide
 (T,C,I,R)
 DHS Chemical of Interest

- Phosphorus pentoxide (C,I)

- Phosphorus sesquisulfide
 (T,C,I,R)

- Phosphorus sulfide (R)

- Phosphorus tribromide
 (T,R)

- Phosphorus trichloride
 (T,C,R)
 DHS Chemical of Interest

- Phosphoryl bromide
 (T,C,R)

- Phosphoryl chloride
 (T,C,R)

- PHOSTOXIN (R,T)
 P-Listed (Mark w/ red P)

- Phosphoric acid
 DHS Chemical of Interest

- Phthaleic anhydride
 P-Listed (Mark w/ red P)

- Physostigmine
 P-Listed (Mark w/ red P)

- Physostigmine salicylate
 P-Listed (Mark w/ red P)

- 2-Picoline

- Picramide (I,R)

- Picric acid (I,R)

- Picrite
 DHS Chemical of Interest

- Picrotoxin (T)

- Picryl chloride (I,R)

- Piperidine
 DHS Chemical of Interest

- Piperidine, 1-nitroso-o-pinacolyl methylphosphonochloridate
 DHS Chemical of Interest

- o-Pinacolyl methylphosphonofluoridate
 DHS Chemical of Interest

- Platinum compounds (T)

- Plumbane, tetraethyl
 P-Listed (Mark w/ red P)

- Polychlorinated biphenyls

- Polychlorocamphene (T)
 P-Listed (Mark w/ red P)

- Polyvinyl nitrate (I,R)

- Potasan (T)

- Potassium (C,I,R)

- Potassium (metal)
 Peroxide Forming Chemical Class III

- Potassium acid fluoride
 (T,C)

- Potassium acid oxalate (T)

- Potassium amide
 Peroxide Forming Chemical Class III

- Potassium arsenate (T)

- Potassium arsenite (T)

- Potassium bichromate
 (T,C,I)

- Potassium bifluoride (T,C)

- Potassium binoxalate (T)

- Potassium bromate (T,I)

- Potassium chlorate
 DHS Chemical of Interest
- Potassium cyanide
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Potassium dichloroisocyanurate (T,I)
- Potassium dichromate (T,C,I)
- Potassium fluoride (T)
- Potassium hydride (C,I,R)
- Potassium hydroxide (T,C)
- Potassium nitrate (I,R)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Potassium nitrite (I,R)
- Potassium oxalate (T)
- Potassium perchlorate (T,I,R)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Potassium permanganate (T,C,I)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Potassium peroxide (C,I,R)
- Potassium phosphate
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Potassium silver cyanide
 P-Listed (Mark w/ red P)
- Potassium sulfide (T,I)
- *Promecarb*
 P-Listed (Mark w/ red P)
- Pronamide
- Propadiene
 DHS Chemical of Interest
- Propanal, 2-methyl-2-(methylthio)-, O-
 P-Listed (Mark w/ red P)
- [(methylamino)carbonyl]oxime
 P-Listed (Mark w/ red P)
- Propanal, 2-methyl-2-(methyl-sulfonyl)-, O-
 [(methylamino)carbonyl]oxime
 P-Listed (Mark w/ red P)
- 1,2,3-Propanetriol, trinitrate (R)
 P-Listed (Mark w/ red P)
- Propanal (T,I)
- Propanoic acid (T,C,I)
- Propanoic acid, 2-(2,4,5-trichlorophenoxy)-
- Propanol (T,I)
- Propanol (T,I)
- Propanol (T,I)
- Propanone (I)
- Propanone (I)
- 2-Propanone (I)
- 2-Propanone, 1-bromo-
 P-Listed (Mark w/ red P)
- Propargyl alcohol
 P-Listed (Mark w/ red P)
- Propargyl bromide (T,I)
- Propenal (T,I)
- Propanenitrile
 P-Listed (Mark w/ red P)
- Propanenitrile, 3-chloro-
 P-Listed (Mark w/ red P)
- Propanenitrile, 2-hydroxy-2-methyl-
 P-Listed (Mark w/ red P)
- 1-Propanethiol (T,I)
- 2-Propanethiol (T,I)
- 2-Propanenitrile
- 2-Propanenitrile, 2-methyl-
 (I,T)
- 1-Propanol, 2-methyl- (I,T)
- 1-Propanol, 2,3-dibromo-, phosphate (3:1)
- Propenal, 2-methyl- (I,T)
- Propanone (I)
- Propanone (I)
- Propanone (I)
- Propanone (I)
- Propargyl bromide (T,I)
- 2-Propenamide
- 1-Propane, 1,3-dichloro-
- 1-Propane, 1,1,2,3,3,3-hexachloro-
- 2-Propanenitrile
- 2-Propanenitrile, 2-methyl- (I,T)
- Propen-1-ol
 P-Listed (Mark w/ red P)

62
- 2-Propenoic acid (I)

- 2-Propenoic acid, ethyl ester (I)

- 2-Propenoic acid, 2-methyl-, ethyl ester

- 2-Propenoic acid, 2-methyl-, methyl ester (I,T)

- 2-Propenal (I)
P-Listed (Mark w/ red P)

- Propham

- beta-Propiolactone (T)

- Propionaldehyde (T,I)

- Propionic acid (T,C,I)

- Propionitrile

DHS Chemical of Interest

- Propoxur

- n-Propyl acetate (T,I)

- n-Propyl alcohol (T,I)

- Propyl chloroformate

DHS Chemical of Interest

- n-Propyl formate (T,I)

- n-Propyl mercaptan

- n-Propylamine (and isomers) (I,T)

- Propylene

DHS Chemical of Interest

- Propylene dichloride (T,I)

- Propylene oxide (T,I)

DHS Chemical of Interest

- Propyleneimine

DHS Chemical of Interest

- 2-Propylenimine

P-Listed (Mark w/ red P)

- Propyn-1-ol

P-Listed (Mark w/ red P)

- Propyleneimine (T,I)

- Propylphosphonyldifluoride

DHS Chemical of Interest

- Propyl trichlorosilane

DHS Chemical of Interest

- Pyrrole, 1-nitroso-

- Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate (ester), (3aS-cis)-
P-Listed (Mark w/ red P)

- Pyridine

P-Listed (Mark w/ red P)

- Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)-, & salts

P-Listed (Mark w/ red P)

- Pyridine, 2-methyl-

- Pyridine, 3-(1,2,3,4-tetrahydro-1-naphthalenyl)-2H-1-benzopyran-2-one) (T)

- Pyridine, 5-[bis(2-chloroethyl)amino]-

DHS Chemical of Interest

- Pyridine, 5-bis(2-chloroethyl)amino-

DHS Chemical of Interest

- Pyrosulfuryl chloride

(T,C,R)

- Pyroxylin (I,R)

- Pyroxylin (nitrocellulose) in ether and alcohol (I,R)

- Pyrrolidine, 1-nitroso-

- Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate (ester), (3aS-cis)-
P-Listed (Mark w/ red P)

- QUINONE (T)

- Quinuclidine-3-ol

DHS Chemical of Interest

- Quinuclidine benzilate (BZ)

DHS Chemical of Interest

DHS Chemical of Interest

- Raney nickel (I)

- RACUMIN 57 (4-Hydroxy-3-(1,2,3,4-tetrahydro-1-naphthalenyl)-2H-1-benzopyran-2-one) (T)

- RATOX (T)
P-Listed (Mark w/ red P)

- Reserpine

- Resorcinol

- Saccharin, & salts

- 4(1H)-Pyrimidinone, 2,3-dihydro-6-methyl-2-thioxo-

- Pyrosulfuryl chloride

(T,C,R)

- Pyroxylin (I,R)

- Pyroxylin (nitrocellulose) in ether and alcohol (I,R)

- Pyrrolidine, 1-nitroso-

- Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate (ester), (3aS-cis)-
P-Listed (Mark w/ red P)

- QUINONE (T)

- Quinuclidine-3-ol

DHS Chemical of Interest

- Quinuclidine benzilate (BZ)

DHS Chemical of Interest

DHS Chemical of Interest

- Raney nickel (I)

- RACUMIN 57 (4-Hydroxy-3-(1,2,3,4-tetrahydro-1-naphthalenyl)-2H-1-benzopyran-2-one) (T)

- RATOX (T)
P-Listed (Mark w/ red P)

- Reserpine

- Resorcinol

- Saccharin, & salts
- Safrole
- Salicylated mercury (T) *Contains Mercury (Mark w/ red P)*
- Saltpeter (I,R)
- Sarin *DHS Chemical of Interest*
- Schradan (T) *P-Listed (Mark w/ red P)*
- Selenious acid
- Selenious acid, dithallium(1+) salt *P-Listed (Mark w/ red P)*
- Selenium (T)
- Selenium compounds (T)
- Selenium dioxide
- Selenium fluoride (T)
- Selenium hexafluoride *DHS Chemical of Interest*
- Selenium sulfide
- Selenourea *P-Listed (Mark w/ red P)*
- Selenous acid (T)
- Selenious acid and salts (T)
- L-Serine, diazoacetate (ester)
- Sesquimustard *DHS Chemical of Interest*
- Silane *DHS Chemical of Interest*
- Silicochloroform (T,C,I,R)
- Silicon chloride (T,C,R)
- Silicon tetrachloride (T,C,R) *DHS Chemical of Interest*
- Silicon tetrafluoride *DHS Chemical of Interest*
- Silver acetylide (I,R)
- Silver azide (I,R)
- Silver compounds (T)
- Silver nitrate (T)
- Silver styphnate (I,R)
- Silver tetrazene (I,R)
- Silver trinitroresorcinate (I,R)
- Silvex (2,4,5-TP)
- Soda niter (T,I,R)
- Sodamide (C,I,R) *Peroxide Forming Chemical Class III*
- Sodium amide (C,I,R)
- Sodium (C,I,R)
- Sodium acid fluoride (T,C)
- Sodium alminate (C)
- Sodium aluminum hydride (C,I,R)
- Sodium bichromate (T,C,I)
- Sodium bifluoride (T,C)
- Sodium bromate (T,I)
- Sodium cacodylate (T)
- Sodium carbonate peroxide (I)
- Sodium chlorate (T,I) *DHS Chemical of Interest*
- Sodium chlorite (T,I)
- Sodium chromate (T,C)
- Sodium dichloroisocyanurate (I)
- Sodium dichromate (T,C,I)
- Sodium dimethylarsenate (T)
- Sodium dinitro-o-cresolate *DHS Chemical of Interest*
- Sodium dithionite *DHS Chemical of Interest*
- Sodium fluoride (T)
- Sodium hydride (T,C,I,R)
- Sodium hydrosulfide (T,I)
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Notes/Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium hydrosulfite</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium hyposulfite (I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium hydroxide (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium hypochlorite (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium methylate (C,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium methoxide (C,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium molybdate (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium monoxide (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium nitrate (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium nitrite (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium oxide (T,C)</td>
<td>P-Listed (Mark w/ red P)</td>
</tr>
<tr>
<td>Sodium perchlorate (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium permanganate (T,I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium peroxide (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium phosphide</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium picramate (T,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium potassium alloy (C,I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium selenate (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium sulfide (T,I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium sulfocyanate (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium thiocyanate (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Soman</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium chlorate</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sodium dichloride</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfur dioxide, anhydrous</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Stannic chloride (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Starch nitrate (I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Stibine</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Streptozotocin</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Strontium arsenate (T)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Strontium dioxode (I,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfur mustard (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfur pentafluoride (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfur tetrafluoride</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfur trioxide (T,C,I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuric acid (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuric acid, fuming</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuric anhydride (T,C,I)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuric acid, dimethyl ester</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfurous acid (T,C)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuryl chloride (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuryl fluoride (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuryl fluoride (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfuryl fluoride (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Supracide</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfonfyl fluoride (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Supracide</td>
<td>DHS Chemical of Interest</td>
</tr>
<tr>
<td>Sulfone (T,C,R)</td>
<td>DHS Chemical of Interest</td>
</tr>
</tbody>
</table>
- SYSTOX (T)
- 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid) (T)
- Tabun
 DHS Chemical of Interest
- TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) (T)
- TDI (Toluene-2,4-diisocyanate) (I,R)
- TEDP (Tetraethyl dithiopyrophosphate) (T)
 P-Listed (Mark w/ red P)
- TEL (Tetraethyl lead) (and other organic lead) (T,I)
- Tellurium hexafluoride (T,C)
 DHS Chemical of Interest
- TELODRIN (T)
- TEMIK (T)
 P-Listed (Mark w/ red P)
- TEPA
 (Triethylenephosphoramide) (T)
- TEPP (Tetraethyl pyrophosphate) (T)
- 1,2,4,5-Tetrachlorobenzene
- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (T)
- sym-Tetrachloroethane (T)
- 1,1,1,2-Tetrachloroethane
- 1,1,2,2-Tetrachloroethane
- Tetrachloroethylene (T)
- Tetrachloromethane
- 2,3,4,6-Tetrachlorophenol
- 2,4,5-Trichlorophenoxyacetic acid (T)
- Tetrachloromethane
- O,O-Tetramethylthiuram monosulfide (T)
- Tetranitroaniline
 DHS Chemical of Interest
- Tetraethyl lead
 P-Listed (Mark w/ red P)
- Tetraethyl pyrophosphate
 P-Listed (Mark w/ red P)
- Tetraethyl dithiopyrophosphate
 P-Listed (Mark w/ red P)
- Tetraethylthiuram monosulfide (T)
- Tetramethylphosphorodiamidic fluoride (T)
- Tetranitromethane (R)
 P-Listed (Mark w/ red P)
 DHS Chemical of Interest
- Tetraphosphoric acid, hexaethyl ester
 P-Listed (Mark w/ red P)
- Tetraphosphorus trisulfide (T,C,I,R)
- Tetrasul (T)
- Tetrazene (I,R)
 DHS Chemical of Interest
- Tetrazol-1-ic acid
 DHS Chemical of Interest
- 1H-Tetrazole
 DHS Chemical of Interest
- THF (Tetrahydrofuran) (T,I)
 Peroxide Forming Chemical Class II
- Thallium (T)
- Thallium(I) acetate
- Thallium(I) carbonate
- Thallium chloride
- Thallium(I) chloride
- Thallium compounds (T)
- Thallium(I) nitrate
 - Thioperoxydicarbonic diamide, tetramethyl-
 - Thiophanate-methyl
 - TML (Tetramethyl lead) (T,I)

- Thallium oxide
 - Thiophenol
 - Thiophosphoryl chloride (T.C,R)

- Thallium(I) selenite
 - Thiophanate-methyl

- Thallium(I) sulfate
 - Thiophosphoryl chloride (T.C,R)

- Thallous sulfate (T)
 - Thiourea

- THIMET (T)
 - Thiourea, (2-chlorophenyl)-

- THIODAN (T)
 - Thiourea, 1-naphthalenyl-

- Thioacetamide

- Thiacarbonylchloride (T,C,R)

- Thiodicarb

- Thiodiglycol
 - Thiram
 - Thorium (powder) (I)

- Thiodiphosphoric acid, tetraethyl ester
 - Tin compounds (organic) (T)
 - Tin tetrachloride (T,C)

- Thiofanox
 - Tirpate

- Thioimidodicarbonic diamide
 - Titanium (powder) (I)

- Thiomethanol (I,T)

- Thionazin

- Thionyl chloride (T,C,R)
 - Titanic chloride (T,C,R)

- Thiophosgene (T,C,R)
 - TMA (Trimethylamine) (T,I)

- Tin compounds (organic) (T)
 - o-Toluidine
 - p-Toluidine
 - o-Toluidine hydrochloride

- Thionazin

- Thionyl chloride (T,C,R)
 - Titanium tetrachloride (T,C,R)
 - Titanium sulfate (T)
 - Titanium tetrachloride (T,C,R)
 - Titanium tetraiodide (T,C,R)
 - TRANID (T)

- Thionyl chloride (T,C,R)
 - Triallate
 - Triamiphos

- Thionyl chloride (T,C,R)
 - 1H-1,2,4-Triazol-3-amine
- Trichlorethene (T)
- Trichloroacetaldehyde (hydrated) (T)
- 1,1,1-Trichloro-2,2-bis(chlorophenyl) ethane (X)
- Trichloroborane (T,C,R)
- 1,1,2-Trichloroethane
- Trichloroethylene (T)
- Trichloroisocyanuric acid (T,I)
- Trichloromethane
- **Trichloromethanethiol**
 P-Listed (Mark w/ red P)
- 1,1,1-Trichloro-2,2-bis(p-methoxyphenyl) ethane (T)
- Trichloromethylsulfenyl chloride (T)
- Trichloromonofluoromethane
- Trichloronitromethane (T)
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4,5-Trichlorophenoxyacetic acid
- Trichlorosilane (T,C,I,R)
- Triethanolamine
- Triethanolamine hydrochloride
- Triethyl phosphate
- Triethylamine
- Triethylene phosphoramide (T)
- Trifluoroacetyl chloride
- Trifluoroacetylchloride (T)
- Trifluorochloroethylene
- Trifluorochloroethylene (T)
- 1,1,2-Trichloroethane
- Trichloroethylene (T)
- Trichloroethylene (T)
- Trichloroborane (T,C,R)
- Trifluorochloroethylene
- Trifluoromethylbenzene (T,I)
- Trinitrochlorobenzene
- Trinitrofluorenone
- Trinitroglycerin (T,I,R)
- P-Listed (Mark w/ red P)
- Trinitrofluorobenzene
- Trinitronaphthalene (I,R)
- Trinitrophenetole
- Trinitrophenol (I,R)
- Trinitrophenol (I,R)
- - 2,4,6-Trinitrophenyl methyl ether (I,R)
- Trinitroresorcinol
- Trinitroresorcinol (I,R)
- 2,4,6-Trinitroresorcinol (I,R)
- Trinitrotoluene
- Trinitrotoluene (I,R)
- 2,4,6-Trinitrotoluene (T,I,R)
- 1,3,5-Trioxane, 2,4,6-trimethyl-
- Tris(1-Aziridinyl) phosphine oxide (T)
- Tris(2,3-dibromopropyl) phosphate
- TRITHION (T)
- Tritonal
- 2,4,6-Trinitrobenzoic acid (I,R)
- Trypan blue
- Tungsten hexafluoride
 DHS Chemical of Interest

- Tungstic acid and salts (T)

- Turpentine (T,I)

- UDMH (1,1-Dimethylhydrazine)

- ULTRACIDE (T)

- Uracil mustard

- Uranyl nitrate (T,I,R)

- Uranium hexafluoride
 DHS Chemical of Interest

- Uranium nitrate (T,I,R)

- Urea
 DHS Chemical of Interest

- Urea, N-ethyl-N-nitroso-

- Urea, N-methyl-N-nitroso-

- Urea nitrate (T,I,R)
 DHS Chemical of Interest

- n-Valeraldehyde (T,I)

- **Vanadic acid, ammonium salt**
 P-Listed (Mark w/ red P)

- **Vanadic acid anhydride (T)**
 P-Listed (Mark w/ red P)

- Vanadic acid salts (T)

- **Vanadium oxide**
 P-Listed (Mark w/ red P)

- Vanadium oxytrichloride (T,C)

- Vanadium Pentoxide (T)
- Xylene (I)

- Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-

- ZECTRAM (T)
 P-Listed (Mark w/ red P)

- Zinc (powder) (I)

- Zinc ammonium nitrate (T,I)

- Zinc arsenate (T)

- Zinc arsenite (T)

- Zinc chloride (T,C)

- Zinc compounds (T)

- Zinc cyanide
 P-Listed (Mark w/ red P)

- Zinc, bis (dimethylcarbamodithioato-S,S')-
 P-Listed (Mark w/ red P)

- Zinc dithionite
 DHS Chemical of Interest

- Zinc dioxide (T,I,R)

- Zinc ethyl (C,I,R)

- Zinc hydrosulfite
 DHS Chemical of Interest

- Zinc nitrate (T,I,R)

- Zinc permanganate (T,I)

- Zinc peroxide (T,I,R)

- Zinc phosphide when present at concentrations greater than 10% (R,T)
 P-Listed (Mark w/ red P)

- Zinc phosphide, when present at concentrations of 10% or less

- Zinc sulfate (T)

- ZINOPHOS (T)

- Ziram
 P-Listed (Mark w/ red P)

- Zirconeum (powder) (I)

- Zirconium chloride (T,C,R)

- Zirconium picramate (I)
 DHS Chemical of Interest

- Zirconium tetrachloride (T,C,R)

- Zinc phosphide, when present at concentrations greater than 10% (R,T)
 P-Listed (Mark w/ red P)

- Zinc phosphide, when present at concentrations of 10% or less

- Zinc sulfate (T)

- ZINOPHOS (T)

- Ziram
 P-Listed (Mark w/ red P)

- Zirconium (powder) (I)

- Zirconium chloride (T,C,R)

- Zirconium picramate (I)
 DHS Chemical of Interest

- Zirconium tetrachloride (T,C,R)
Characteristics of Hazardous Chemicals

Characteristics of Hazardous Waste: Ignitability (D001)

40 CFR - CHAPTER I - 261.21

(a) A solid waste exhibits the characteristic of ignitability if a representative sample of the waste has any of the following properties:

(1) It is a liquid, other than an aqueous solution containing less than 24 percent alcohol by volume and has flash point less than 60 °C (140 °F), as determined by a Pensky-Martens Closed Cup Tester, using the test method specified in ASTM Standard D-93-79 or D-93-80 (incorporated by reference, see § 260.11), or a Setaflash Closed Cup Tester, using the test method specified in ASTM Standard D-3278-78 (incorporated by reference, see § 260.11), or as determined by an equivalent test method approved by the Administrator under procedures set forth in §§ 260.20 and 260.21.

(2) It is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited, burns so vigorously and persistently that it creates a hazard.

(3) It is an ignitable compressed gas as defined in 49 CFR 173.300 and as determined by the test methods described in that regulation or equivalent test methods approved by the Administrator under §§ 260.20 and 260.21.

(4) It is an oxidizer as defined in 49 CFR 173.151.

(b) A solid waste that exhibits the characteristic of ignitability has the EPA Hazardous Waste Number of D001.

Characteristics of Hazardous Waste: Corrosivity (D002)

40 CFR - CHAPTER I - 261.22

(a) A solid waste exhibits the characteristic of corrosivity if a representative sample of the waste has either of the following properties:

(1) It is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5, as determined by a pH meter using Method 9040 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in § 260.11 of this chapter.

(2) It is a liquid and corrodes steel (SAE 1020) at a rate greater than 6.35 mm (0.250 inch) per year at a test temperature of 55 °C (130 °F) as determined by the test method specified in NACE (National Association of Corrosion Engineers) Standard TM-01-69 as standardized in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in § 260.11 of this chapter.

(b) A solid waste that exhibits the characteristic of corrosivity has the EPA Hazardous Waste Number of D002.

Characteristics of Hazardous Waste: Reactivity (D003)

40 CFR - CHAPTER I - 261.23

(a) A solid waste exhibits the characteristic of reactivity if a representative sample of the waste has any of the following properties:

(1) It is normally unstable and readily undergoes violent change without detonating.

(2) It reacts violently with water.

(3) It forms potentially explosive mixtures with water.

(4) When mixed with water, it generates toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.

(5) It is a cyanide or sulfide bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors or fumes in a quantity sufficient to present a danger to human health or the environment.

(6) It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.

(7) It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.

(8) It is a forbidden explosive as defined in 49 CFR 173.51, or a Class A explosive as defined in 49 CFR 173.53 or a Class B explosive as defined in 49 CFR 173.88.

(b) A solid waste that exhibits the characteristic of reactivity has the EPA Hazardous Waste Number of D003.

[45 FR 33119, May 19, 1980, as amended at 55 FR 22684, June 1, 1990]

Characteristics of Hazardous Waste: Toxicity (D004-D043)

40 CFR - CHAPTER I - 261.24

(a) A solid waste (except manufactured gas plant waste) exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in “Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of this chapter, the extract from a representative sample of the waste contains any of the contaminants listed in table 1 at the concentration equal to or greater than the respective value given in that table. Where the waste contains less than 0.5 percent filterable solids, the waste itself, after filtering using the methodology outlined in Method 1311, is considered to be the extract for the purpose of this section.

(b) A solid waste that exhibits the characteristic of toxicity has the EPA Hazardous Waste Number specified in Table I which corresponds to the toxic contaminant causing it to be hazardous.

Table 1--Maximum Concentration of Contaminants for the Toxicity Characteristic
<table>
<thead>
<tr>
<th>No.</th>
<th>Regulatory Contaminant</th>
<th>CAS No.</th>
<th>Level (mg/L)</th>
<th>No.</th>
<th>Regulatory Contaminant</th>
<th>CAS No.</th>
<th>Level (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D004</td>
<td>Arsenic</td>
<td>7440-38-2</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D005</td>
<td>Barium</td>
<td>7440-39-3</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D018</td>
<td>Benzene</td>
<td>71-43-2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D006</td>
<td>Cadmium</td>
<td>7440-43-9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D019</td>
<td>Carbon tetrachloride</td>
<td>56-23-5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D020</td>
<td>Chlordane</td>
<td>57-74-9</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D021</td>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D022</td>
<td>Chloroform</td>
<td>67-66-3</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D007</td>
<td>Chromium</td>
<td>7440-47-3</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D023</td>
<td>o-Cresol</td>
<td>95-48-7</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D024</td>
<td>m-Cresol</td>
<td>108-39-4</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D025</td>
<td>p-Cresol</td>
<td>106-44-5</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D026</td>
<td>Cresol</td>
<td>76-44-8</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D016</td>
<td>2,4-D</td>
<td>94-75-7</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D027</td>
<td>1,4-Dichlorobenzene</td>
<td>106-46-7</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D028</td>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D029</td>
<td>1,1-Dichloroethylene</td>
<td>75-35-4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D030</td>
<td>2,4-Dinitrotoluene</td>
<td>121-14-2</td>
<td>30.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D032</td>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
<td>30.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D034</td>
<td>Hexachloroethane</td>
<td>67-72-1</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D008</td>
<td>Lead</td>
<td>7439-92-1</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D013</td>
<td>Lindane</td>
<td>58-89-9</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D009</td>
<td>Mercury</td>
<td>7439-97-6</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D014</td>
<td>Methoxychlor</td>
<td>72-43-5</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D035</td>
<td>Methyl ethyl ketone</td>
<td>78-93-3</td>
<td>200.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D036</td>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D037</td>
<td>Pentachlorophenol</td>
<td>87-86-5</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D038</td>
<td>Pyridine</td>
<td>110-86-1</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D010</td>
<td>Selenium</td>
<td>7782-49-2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D011</td>
<td>Silver</td>
<td>7440-22-4</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D039</td>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D015</td>
<td>Toxaphene</td>
<td>8001-35-2</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D040</td>
<td>Trichloroethylene</td>
<td>79-01-6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D041</td>
<td>2,4,5-Trichlorophenol</td>
<td>95-95-4</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D042</td>
<td>2,4,6-Trichlorophenol</td>
<td>88-06-2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D017</td>
<td>2,4,5-TP (Silvex)</td>
<td>93-72-1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D043</td>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	Hazardous waste number.
2	Chemical abstracts service number.
3	Quantitation limit is greater than the calculated regulatory level. The quantitation limit therefore becomes the regulatory level.
4	If o-, m-, and p-Cresol concentrations cannot be differentiated, the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.
Exempted Product Categories List

The following products are hereby exempted from the Inventory/Labeling System of the CMP based upon the determination that if used according to normal procedures the product would not be classified as a hazardous chemical. However, this classification does not preclude the product from being hazardous waste if, at the time of disposal, it meets the regulatory definition of hazardous waste.

1. Household Cleaning Compounds (single container volume of 5 gallons or less), which can be purchased at a grocery store, meets the OSHA definition for commercial product, and will be used in the manner specified on the labeling. Examples include Comet, Windex, Clorox, etc. "Industrial Use" products and hazardous solvents are not acceptable for this list.

2. DNA and RNA compounds and proteinaceous chemicals, e.g. nucleic acids used in recombinant DNA experiments, enzymes, antibodies. Chemicals supplied in hazardous solvents must be tracked.

3. Metabolites, substances produced during the normal metabolism of living organisms. Examples include sucrose, ATP, citrate, starch, amino acids, vitamins, fats. Reactive substances and biohazards must be treated according to the Inventory/Labeling System of this CMP or existing campus policy.

4. Chromatographic chemicals and absorbents, e.g. silica gel, derivatives of agarose, of dextran and of cellulose.

5. Culture media, commercial products used as growth media for microorganisms or cultured cells.

6. Non-toxic and non-reactive metallic salts, e.g. NaCl, KH₂PO₄, K₂SO₄.

7. Biological buffers, non-reactive buffers commonly used for in vitro biochemical or molecular biological experiments, including Tris, amino acid derivatives, alkylsulfonates and imidazole. For examples, see "Biological Buffers" in Sigma Chemical Co. catalog.

8. Biological detergents, non-reactive detergents commonly used in biochemical research, e.g. bile salts, alkylammonium salts, polyoxyethylene ethers (Triton). For examples, see "Biological detergents" in the Sigma Chemical Co. catalog. Products that would be classified D001 wastes are not acceptable for this list.

9. All oils in volumes of 1 gallon or less. "Used" oil will be managed according to state requirements.

10. Gas cylinders. Empty or declared waste gas cylinders are to be returned to vendor as a condition of purchase.

11. Chemicals sealed in equipment or instruments. Disposal of such equipment or instruments may require treatment as hazardous material.

12. Non-reactive pH and ion indicators, e.g. phenolphthalein.

13. Clinical drugs or products not listed under RCRA, e.g. common antibiotics and anesthetics. Products that would be classified as D001 wastes are not acceptable for this list.

14. Drugs. Drugs used in animal research that are regulated by the DEA. Regulated drugs used for other research purposes are not acceptable for this list. Hazardous chemicals and solvents used in the manufacture of regulated drugs are to be tracked as specified in the CMP.

15. Non-radioactive isotopic derivatives of non-hazardous chemicals, e.g. isotopic compounds containing deuterium, ¹³C or ¹⁵N, such as D₂O or ¹³CO₂.
APPENDIX B

- Designation of Facility Supervisors and Room Updates
- Hazardous Chemical Transfer Form
- Onsite Hazardous Waste Request Form, Step by step Instructions
- Hazardous Waste Tag
- Onsite Satellite Accumulation Label and Waste Request Step by Step Instructions
- Onsite Adding and Deleting Chemicals from Inventory, Step by Step Instructions
- Onsite Printing Bar Codes, Step by Step Instructions
DESIGNATION OF FACILITY SUPERVISORS AND ROOM UPDATES

Complete the following form for any updates concerning Facility Hazardous Supervisors or designated rooms. Send completed forms to EHS, 4747 Troost. If you have any questions or problems in completing this form call 235-6697 for assistance.

DATE:__

HAZARDOUS MATERIALS MANAGER: __

FACILITY SUPERVISOR: __

ROOM(S): __

☐ ADD
☐ DELETE
☐ CHANGE FACILITY SUPERVISOR

NEW FACILITY SUPERVISOR: __

Print Dean’s Name Authorizing this Change

___ DATE:____________________

Signature of Dean Authorizing this Change

___ DATE:____________________

For Use by EHS

76
TRANSFER OF HAZARDOUS MATERIALS BETWEEN FACILITY SUPERVISORS

Date: _______________________

TRANSFER FROM-
Location (Building and Room): ___

Hazardous Materials Supervisor: ___

Hazardous Materials Supervisor's Signature: __________________________ Date: __________

TRANSFER TO-
Location (Building and Room): ___

Hazardous Materials Supervisor: ___

Hazardous Materials Supervisor's Signature: __________________________ Date: __________

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Original Barcode #</th>
<th>New Barcode #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For assistance in filling out this form call 235-6697.
Step by Step instructions for Hazardous Waste Request Form.

Go to EHS homepage and click on OnSite Chemical tracking.
Use your UMKC username and password to access program.
Click on the Hazardous Waste icon. This is for disposal of your laboratory hazardous waste. You also can use the Satellite Accumulation icon for disposal of your hazardous waste, which is explained in another step by step instruction.
Click on Add
Fill out the fields and click the add container button if you want to dispose of another waste container or the save button if you only have one. If you have multiple waste containers, hit the save button after you have completed all the waste containers for pick-up.

<table>
<thead>
<tr>
<th>Container 1</th>
<th>Waste Type</th>
<th>Chemicals-Used</th>
<th>Physical Form</th>
<th>Quantity</th>
<th>Unit of Measure</th>
<th># of Conts.</th>
<th>Container Type</th>
<th>Location of Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liquid</td>
<td>4.00</td>
<td>Liter</td>
<td>1.00</td>
<td>Plastic Bottle</td>
<td>Fume hood</td>
</tr>
</tbody>
</table>

Comments

Container Contents

<table>
<thead>
<tr>
<th>Chemical Description</th>
<th>start with</th>
<th>% of Content</th>
<th>pH</th>
<th>CAS #</th>
<th>Multiple Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td></td>
<td>50</td>
<td></td>
<td>67-64-1</td>
<td></td>
</tr>
<tr>
<td>METHANOL</td>
<td></td>
<td>25</td>
<td></td>
<td>67-95-1</td>
<td></td>
</tr>
<tr>
<td>WATER</td>
<td></td>
<td>25</td>
<td></td>
<td>7732-18-5</td>
<td></td>
</tr>
</tbody>
</table>
I hit add container and did a second waste container

<table>
<thead>
<tr>
<th>Physical Form</th>
<th>Quantity</th>
<th>Unit of Measure</th>
<th>% of Cont.</th>
<th>pH</th>
<th>CAS #</th>
<th>Multiple Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>20 (0.0)</td>
<td>Liter</td>
<td>20 (0.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

Container Contents

<table>
<thead>
<tr>
<th>Chemical Description</th>
<th>% of Content</th>
<th>pH</th>
<th>CAS #</th>
<th>Multiple Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylene Chloride-d2</td>
<td>25</td>
<td></td>
<td>1665-00-5</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>15</td>
<td></td>
<td>106-95-2</td>
<td></td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>40</td>
<td></td>
<td>64-17-5</td>
<td></td>
</tr>
<tr>
<td>WATER</td>
<td>20</td>
<td></td>
<td>7732-18-5</td>
<td></td>
</tr>
</tbody>
</table>

Location of Waste: South benchtop
Then hit the save button and this is the screen you get which tells you that it was successfully entered and that an email was sent to EHS informing us that there is a waste container from your lab ready to be picked up. The email is automatically sent to us.
<table>
<thead>
<tr>
<th>HM Tag #</th>
<th>HAZARDOUS WASTE</th>
<th>Declared Waste Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td></td>
<td>01/12/2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ChemName</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td></td>
</tr>
</tbody>
</table>

Federal Law Prohibits Improper Disposal

<table>
<thead>
<tr>
<th>Quantity</th>
<th>300</th>
<th>Units g</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rm #</th>
<th>Person Authorizing PU</th>
<th>Contact #</th>
<th>RGN</th>
<th>DOT Class</th>
<th>EPA/DNR #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bldg</td>
<td>Dr. Jekle</td>
<td>555-5555</td>
<td>1</td>
<td>8</td>
<td>D002</td>
</tr>
</tbody>
</table>

EPA ID #: MOD-073-133-647
MODNR GEN ID#: 001048
Facility ID #: HH1105

If found contact: UMKC Police Department (816) 235-1515
UMKC EHS Office (816) 235-1642
US Environmental Protection Agency

Generator Facility Information:
The University of Missouri – Kansas City
5010 Troost Avenue, Kansas City, Missouri 64110

HANDLE WITH CARE!
Step by Step Instructions for Satellite Accumulation Label and Waste Request

Click on the Satellite Accumulation icon. This is for the satellite accumulation chemical waste label.
Click Add

Drag a column header and drop it here to group by that column
Fill out required fields and click save.
Highlight field and click on the Add New Item
This is the screen you get. Fill out the form using the drop down boxes. For the chemical description, click on the box underneath and type the chemical name in it. This will automatically go to 100%, if there are multiple chemicals, simply click underneath the chemical you just typed and put the other chemicals that are in the container, adjusting the percentages for the chemical. Click the save button. Click the add item button to add chemicals to the container at a later time.
Here is the screen you get with the entry you just made highlighted. Click on the **In Lab Container Reports** drop down box and you will have three choices for your chemical waste label, small, medium, and large. Pick which one you want depending on the size of your accumulation container and click on it. The small would be for around a one liter container, a medium for a 4 liter container, and a large for a 20 liter container.
I picked the medium label and this is what it looks like. Print the chemical waste label and you can handwrite the constituents on the label as you add them and update them to the accumulation container via the program as mentioned above by highlighting the Container #, which this one is 111141, and clicking on the add item button. Attach the label to your waste container. This is how we track the waste container and it is very important to attach this to your accumulation container.
When your accumulation container is full, you can request that it be picked up from your label contents. Highlight the container number, in this case it is 111139. Scroll over to the seal button and click on it.
This is the screen you get. Click on seal.
Then click on the request pickup button.
It will ask you to create a waste profile if you have not done so before. Just fill out the required fields and this will be a one-time task. If you have created a waste profile before, this is what your screen will look like with the appropriate information. Click on the Yes button.
After you click on the Yes button, this is the screen you will get which tells you that it was successfully entered and that an email was sent to EHS informing us that there is a waste container from your lab ready to be picked up. The email is automatically sent to us.
Adding and Deleting Chemicals from Inventory:

- First click inventory icon

- Click Quick Chemical Entry link
- Be sure the correct PI is selected in the PI box
- Then click the +Add button to begin adding a Chemical

- In the Chemical information box click the Select Chemical button
- Type the name of the chemical and press the search button to find it.
- Then press the select button

After selecting the chemical you will be taken back to this screen with the Chemical Description, Cas#, and Chemical Number fields filled in.
-Then scroll down and fill in the boxes describing the quantity and physical state of the Chemical.
-Then enter in the storage information in the **Location & Storage Information** box

-Scrolling down further allows you to add more information about the chemical and gives you Hazard information about the Chemical.
-After you have entered all necessary information click the Save button at the bottom of the screen.

-You will be taken back to the **Quick Chemical Entry** page from before with the newly entered chemical selected in Red.
-Scrolling right allows you too see more information about the chemical including storage requirements and quantities.
Deleting one or multiple chemicals:

Chemical Click the Remove Button

- A box will appear asking for you to confirm removal
Selected all the chemicals you want to be removed by clicking these check boxes. You can click multiple boxes to delete multiple chemicals. The number of items selected will appear in red.

In the drop down menu you will be given the options: Data Entry Error, Used, Transferred, or Waste. Select one then click the remove button and the entry will be deleted from the Inventory.
Printing Bar Codes:
- First Click inventory icon

- click Quick Chemical Entry link
- Be sure the correct PI is selected in the PI box.
- Then click the chemical you want to print a bar code for which should select it in red.
- Next click the Chemical Inventory Reports button and click the Chemical Bar Code label button from the drop down menu.

- After clicking Chemical Bar Code label a second window will open up containing a PDF of the label.
Printing Multiple Bar Codes: By Date
-This is so you can print multiple bar codes for chemicals you have recently logged or logged between certain dates.

Click Inventory

Go to Quick Chemical Entry
Click the **Chemical Inventory Reports** Tab and then Click **Chemical Bar Code Label New with Date Selection**.
- This window will pop up
- Select a range of dates for the new bar codes you want to print then select for which PI and click View Report
APPENDIX C

-Chemical Management and Treatment Protocols
1. Barium Chloride residues: Dissolve in water (not to exceed one L total volume) and add excess 3M H₂SO₄. After standing overnight, filter insoluble BaSO₄, dry, mix with equal amount of sand and package for transfer to landfill. Neutralize the filtrate with NaOH and discard into the drain with excess running water.

2. Magnesium Sulfate or Zinc Sulfate residues: Dissolve in water (not to exceed one L total volume) and neutralize with NaOH. Filter insolubles, dry and package for transfer to landfill. Discard filtrate into the drain with excess running water.

3. Acid Solutions: HCl, HNO₃, H₂SO₄, H₃PO₄ and Acetic (Vinegar). Neutralize with NaHCO₃ or NaOH, total volume of solution not to exceed one L. Discard neutralized solution into the drain with excess running water.

4. Basic Solutions: NaOH, KOH, Ca(OH)₂ and Al(OH)₃. Neutralize with HCl, total volume of solution not to exceed one L. Discard neutralized solution into the drain with excess running water.

5. Oils - Vegetable or mineral: No Treatment Allowed. Add oils to “used” oil container for disposal by EHS.

6. Solutions of Hazardous Salts: No Treatment Allowed. Solutions of hazardous salts must be disposed into proper liquid used chemical containers (separate containers for light and heavy metals) for disposal by EHS.

7. Solid Hazardous Salts: No Treatment unless specifically approved by EHS. Solid hazardous salts must be disposed into proper solid used chemical containers (separate containers for light and heavy metals) for disposal by EHS.

8. Solutions of Non-hazardous Salts: No Treatment Required. Dissolve any residue in water and discard into the drain with excess running water.

10. Alcohols - No Treatment Required: Solutions of water soluble alcohols (<24% by volume) may be discarded into the drain with excess running water. Solutions of water soluble alcohols (>24% by volume) must be disposed into proper liquid used chemical containers for disposal by EHS.

11. Alcohols - No Treatment Allowed: Solutions of water insoluble non-hazardous and hazardous alcohols must be disposed into proper liquid used chemical containers for disposal by EHS.

12. Formaldehyde Solutions: Add about 1 mL of bleach per 1% formaldehyde concentration per mL of solution, let stand for 20 minutes and discard into the drain with excess running water. However if there are other hazardous chemicals in the solution, e.g., chloroform, etc., then this method is not applicable. That chemical solution would need to be placed in a liquid used chemical container for disposal by EHS.

13. DAB Solutions: Add 50 mL of bleach to one L of water in a one gallon plastic container. Pour no more than 250 mL of DAB solution into the plastic container and mix by shaking. Allow container to stand at least 24 hours before discarding into the drain with excess running water.

14. Dilute Solutions of Ethidium Bromide (e.g., electrophoresis buffer containing 0.5 micrograms/mL ethidium bromide).

Method 1: The following method is from Lunn and Sansone (1987)

1. Add 2.9 g of Amberlite XAD-16 for each 100 mL of solution, total volume not to exceed 500 mL. Amberlite XAD-16, a nonionic, polymeric absorbent, is available from Rohm and Haas.
2. Store solution for 12 hours at room temperature, shaking it intermittently.

3. Filter the solution through a Whatman No. 1 filter and discard filtrate into the drain with excess running water.

4. Seal the filter and Amberlite resin in a plastic bag and dispose of the bag into the BFI bio-hazardous waste container.

Method 2: The following method is from Bensaude (1988)

1. Add 100 mg of powdered activated charcoal for each 100 mL of solution, total volume not to exceed 500 mL.

2. Store the solution for one hour at room temperature, shaking it intermittently.

3. Filter the solution through a Whatman No. 1 filter and discard the filtrate into the drain with excess running water.

4. Seal the filter and the activated charcoal in a plastic bag and dispose of the bag in the BFI bio-hazardous waste container.

15. Mercury Residues- Create a paste of zinc powder and dilute (5-10%) sulfuric acid. The paste should then be worked into the surface to be cleaned, and swept up after it has dried. The residue should wash away with soap and water. Next, the surface should be washed again with trisodium phosphate detergent and water, or nitric acid. All solutions and waste should be collected and disposed of through EHS.
APPENDIX D

- Hazardous Waste Incompatibility List
- OnSite Storage Requirements
- Campus Building Abbreviations and Addresses
- Training Available to Personnel Handling Hazardous Waste
<table>
<thead>
<tr>
<th>RGN REACTIVITY GROUP</th>
<th>INCOMPATIBLE WITH</th>
<th>RGN REACTIVITY GROUP</th>
<th>INCOMPATIBLE WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Acids mineral non-oxidizing</td>
<td>4-15, 17-26, 28, 30-34, 101-107</td>
<td>23 Metals, other elemental & alloys as sheets, rods, drops or moldings</td>
<td></td>
</tr>
<tr>
<td>2 Acids mineral oxidizing</td>
<td>3-34, 101-103, 105-107</td>
<td>1-2, 8, 17, 102-104, 107</td>
<td></td>
</tr>
<tr>
<td>3 Acids organic</td>
<td>2, 4-5, 7-8, 10-12, 15, 18, 21, 22, 24-26, 33-34, 102-105, 107</td>
<td>24 Metal & metal compounds, toxic 106-107</td>
<td></td>
</tr>
<tr>
<td>4 Alcohols & glycols</td>
<td>1-3, 8, 18, 21, 25, 30, 34, 104-105, 107</td>
<td>1-3, 6-7, 10, 26, 30, 34, 102-103, 107</td>
<td></td>
</tr>
<tr>
<td>5 Aldehydes 1-3, 7-8, 10, 12, 21, 25, 27-28, 30, 33-34, 104-105, 107</td>
<td>1-3, 5, 12, 17-18, 21, 24, 30, 34, 104-105, 107</td>
<td>1-3, 10, 21, 24-25, 30, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>6 Amides</td>
<td>1-2, 21, 24, 104-105, 107</td>
<td>27 Nitro compounds organic 2, 5, 10, 21, 25, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>7 Amines, aliphatic & aromatic</td>
<td>1-3, 5, 12, 17-18, 21, 24, 30, 34, 104-105, 107</td>
<td>28 Hydrocarbons, aliphatic, unsaturated 1-2, 5, 22, 30, 104, 107</td>
<td></td>
</tr>
<tr>
<td>8 Azo compounds, diazo compounds & hydrazines</td>
<td>1-5, 9, 11-13, 17-23, 25, 30-34, 102-107</td>
<td>29 Hydrocarbons, aliphatic saturated 2, 104, 107</td>
<td></td>
</tr>
<tr>
<td>9 Carbamates</td>
<td>1-2, 8, 10, 21-22, 25, 30, 104, 107</td>
<td>30 Peroxides & hydroperoxides 1-2, 4-5, 7-9, 11-12, 17-22, 24-26, 31-34, 101-105, 107</td>
<td></td>
</tr>
<tr>
<td>10 Caustics</td>
<td>1-3, 5, 9, 13, 17-19, 21-22, 24-27, 32, 34, 102-103, 107</td>
<td>31 Phenols & Cresols 1-2, 8, 18, 21, 25, 30, 34, 102-105, 107</td>
<td></td>
</tr>
<tr>
<td>11 Cyanides</td>
<td>1-3, 8, 17-19, 21, 25, 30, 34, 103-104, 107</td>
<td>32 Organophosphates, phosphothioates, phosphodi- 1-2, 8, 10, 21, 30, 34, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>12 Dithiocarbamates</td>
<td>1-3, 5, 7-8, 18, 21, 25, 30, 34, 103-105, 107</td>
<td>33 Sulfides inorganic 1-3, 5, 8, 18, 30, 34, 102-104, 106-107</td>
<td></td>
</tr>
<tr>
<td>13 Esters</td>
<td>1-2, 8, 10, 21, 25, 102, 104-105, 107</td>
<td>34 Epoxides 1-5, 7-8, 10-12, 20-22, 24-25, 30-33, 102, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>14 Ethers</td>
<td>1-2, 104, 107</td>
<td>101 Combustible & flammable materials, misc. 1-2, 21, 25, 30, 102, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>15 Fluorides inorganic</td>
<td>1-3, 107</td>
<td>102 Explosives 1-3, 8, 10, 13, 21-25, 30-31, 33-34, 101, 103-105, 107</td>
<td></td>
</tr>
<tr>
<td>16 Hydrocarbons aromatic</td>
<td>2, 104, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Halogenated organics</td>
<td>1-2, 7-8, 10-11, 20-23, 25, 30, 104-105, 107</td>
<td>103 Polymerizable compounds 1-3, 8, 10-12, 21-25, 30-31, 33, 102, 104-105, 107</td>
<td></td>
</tr>
<tr>
<td>18 Isocyanates</td>
<td>1-4, 7-8, 10--12, 20-22, 25, 30-31, 33, 104-107</td>
<td>104 Oxidizing agents, strong 1-8, 12-14, 16-23, 25-34, 101-103, 105, 107</td>
<td></td>
</tr>
<tr>
<td>20 Mercaptans & other organic sulfides</td>
<td>1-2, 8, 17-19, 21-22, 25, 30, 34, 104-105, 107</td>
<td>106 Water & mixtures containing water 1-2, 8, 18, 21, 22, 24-25, 33, 105, 107</td>
<td></td>
</tr>
<tr>
<td>22 Metals, other elemental & alloys as powders, vapors or sponges</td>
<td>1-3, 8-10, 17-18, 20, 28, 30, 34, 102-104, 106-107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OnSite Storage Requirements

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROSOL</td>
<td>AEROSOL CONTAINERS - Flammable Gas mixture with liquid - Store with Flammable Liquids in flammable cabinet - Class 3. Note: Contact Chemical Safety for Special Waste Handling Issues.</td>
</tr>
<tr>
<td>BIO</td>
<td>BIOHAZARDOUS MATERIAL - SEE BIOSAFETY OFFICE</td>
</tr>
<tr>
<td>BLUE</td>
<td>HEALTH HAZARD - Store separately in vented, cool, dry, area away from acids, oxidizers, alkalines, and flammable solvents. Store in unbreakable chemically resistant secondary containers. Segregate incompatibles. Toxic if inhaled, ingested, or absorbed through skin. Examples: Cyanides, heavy metal compounds, i.e. cadmium, mercury, osmium, etc.</td>
</tr>
<tr>
<td>BROWN</td>
<td>CORROSIVE - ORGANIC ACID - Store separately in acid storage cabinet, away from acids, oxidizers, toxics, and flammables. Segregate solids and liquids. Never store with Nitric Acid. May harm skin, eyes mucous membranes.</td>
</tr>
<tr>
<td>COR-NOS</td>
<td>CORROSIVE - NOT SPECIFIED - as Acid or Alkaline - liquid or solid, do not store with other corrosives.</td>
</tr>
<tr>
<td>DESICATE</td>
<td>Water reactive or pyrophoric materials. Store in a closed container with controlled low-moisture atmosphere. May be stored under inert gas such as nitrogen or argon.</td>
</tr>
<tr>
<td>DRUG</td>
<td>Drug - regulated by the FDA or DEA, must be kept under lock and key, with limited access. DEA licensing may be required.</td>
</tr>
<tr>
<td>EXPLO</td>
<td>EXPLOSIVE - FORBIDDEN EXPLOSIVE, forbidden unless 30% wetted with water - Contact CSO</td>
</tr>
<tr>
<td>GAS</td>
<td>COMPRESSED GAS CYLINDERS must be labeled according to Hazard Communication Standards, stored with restraints to prevent falling in accordance with NFPA 45 & 55 codes, and limited by use/spare for quantity allowed in the lab according to NFPA 45 & 55 Contact CSO at 706-721-2663 for assistance</td>
</tr>
<tr>
<td>GRAY</td>
<td>General, Non-Reactive - Store on general shelving preferably behind doors and below eye level of the shortest person in the lab. Chemicals that present no more than a mild to moderate risk in any hazard group (no higher than a 2 in health, fire, or reactivity ratings.</td>
</tr>
<tr>
<td>GREEN</td>
<td>Environmentally Hazardous Substance - Store away from municipal water drain lines. Segregate solids and liquids. Store in a separate dry, cool area. Do not dispose wastes down the drain.</td>
</tr>
<tr>
<td>LOCKED</td>
<td>Store Locked up</td>
</tr>
<tr>
<td>ORANGE</td>
<td>Corrosive Alkaline or Basic - Store in separate corrosive cabinet away from all acids, oxidizers, toxics, and flammables. Store solutions of inorganic hydroxides in labeled polyethylene containers. Segregate Organics & Inorganics, and Solids & Liquids. May harm skin, eyes, and mucous membranes.</td>
</tr>
<tr>
<td>R-WSTRIP</td>
<td>Flammable Solid - store away from potential ignition sources such as heat, flames, sparks, etc. Keep away from oxidizers and acids.</td>
</tr>
<tr>
<td>RAD</td>
<td>RADIOACTIVE MATERIAL - See Radiation Safety</td>
</tr>
<tr>
<td>RED</td>
<td>Flammable or Combustible Liquids - Store in flammable cabinet away from sources of ignition. Store highly volatile or temperature sensitive flammable liquids in Explosion-proof refrigerator. May be harmful when fumes/vapors are inhaled, ingested, or absorbed through skin. Flammable or Combustible Solids - Store in a separate dry, cool area away from oxidizers, corrosives, and flammable liquids. May be harmful if dusts are inhaled, ingested, or come in contact with skin.</td>
</tr>
<tr>
<td>REDSTRIP</td>
<td>Flammable Solid, Water Reactive, Class D Extinguisher Required - Store Separately - Contact CSO special storage procedures required.</td>
</tr>
<tr>
<td>REFRIG 1</td>
<td>Potential Explosive - Should be stored in an Explosion Proof Refrigerator. Temperature Sensitive, Explosion hazard. High hazard chemical with special precautions. Contact Chemical Safety for specialized training and information for this product.</td>
</tr>
<tr>
<td>REFRIG 2</td>
<td>RECOMMENDED REFRIGERATION TO DELAY DECOMPOSITION</td>
</tr>
<tr>
<td>RESTRICT</td>
<td>RESTRICTED MATERIAL - SPECIAL APPROVAL REQUIRED FOR PURCHASE - CONTACT THE CSO PRIOR TO BRINGING ON SITE</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>W&BSTRIP</td>
<td>Corrosive Acidic, Solid. Segregate from Alkaline/Basic Solids, Oxidizing or Reducing agents. White with Black Stripes = Corrosive Acidic Solid</td>
</tr>
<tr>
<td>WHITE</td>
<td>Corrosive Inorganic or Oxidizing Acids. Store separately in acid storage cabinet away from Organic Acids, Alkalines, Oxidizers, Toxics, and Flammable or Combustible materials. Segregate Inorganic and Oxidizing acids in secondary chemical resistant containers. Store Nitric Acid Separately. May harm skin, eyes, mucous membranes.</td>
</tr>
<tr>
<td>YELLOW</td>
<td>Reactive, Oxidizing, Peroxides, Explosive Reagents, Water Reactive. Store in spill trays inside a chemical storage cabinet, away from acids, alkalines, toxics, and flammable and combustible materials. Store away from ignition or water sources. If the material is water reactive or air reactive, it must be stored in a desiccator. May react violently with air, water or other substances. Shock sensitive materials must be stored away from all other chemicals, preferable in a desiccator.</td>
</tr>
</tbody>
</table>
Campus Building Abbreviations and Addresses

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Building Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Administrative Center</td>
<td>5115 Oak</td>
</tr>
<tr>
<td>ANLB</td>
<td>Animal Facilities Building</td>
<td>1015 E. 50th St.</td>
</tr>
<tr>
<td>ANNEX</td>
<td>51st Street Annex Building</td>
<td>301 E. 51st St.</td>
</tr>
<tr>
<td>BC</td>
<td>Berkley Child & Family Development Center</td>
<td>1012 E. 52nd St.</td>
</tr>
<tr>
<td>BKSTR</td>
<td>University Bookstore</td>
<td>5000 Rockhill</td>
</tr>
<tr>
<td>BSB</td>
<td>Biological Sciences Building</td>
<td>5007 Rockhill</td>
</tr>
<tr>
<td>BLOCH</td>
<td>Henry W. Bloch School of Business and Public Administration</td>
<td>5110 Cherry</td>
</tr>
<tr>
<td>CH</td>
<td>Cockefair Hall</td>
<td>5121 Rockhill</td>
</tr>
<tr>
<td>RES-H</td>
<td>Cherry St. Residence Hall</td>
<td>5030 Cherry</td>
</tr>
<tr>
<td>RES-H</td>
<td>Oak St. Residence Hall</td>
<td>5051 Oak</td>
</tr>
<tr>
<td>DS</td>
<td>School of Dentistry</td>
<td>650 E. 25th St.</td>
</tr>
<tr>
<td>ED</td>
<td>Education Building</td>
<td>615 E. 52nd St.</td>
</tr>
<tr>
<td>EPP</td>
<td>Epperson House</td>
<td>5200 Cherry</td>
</tr>
<tr>
<td>FA</td>
<td>Fine Arts Building</td>
<td>5015 Holmes</td>
</tr>
<tr>
<td>GAR</td>
<td>Garage</td>
<td>5444 Troost</td>
</tr>
<tr>
<td>EMH</td>
<td>Ernest Manheim Hall</td>
<td>710 E. 52nd St.</td>
</tr>
<tr>
<td>GH</td>
<td>Grant Hall</td>
<td>5228 Charlotte</td>
</tr>
<tr>
<td>GSB</td>
<td>General Services Building</td>
<td>TBA</td>
</tr>
<tr>
<td>RHFH</td>
<td>Robert H. Flarsheim Science and Technology Hall</td>
<td>5110 Rockhill Rd</td>
</tr>
<tr>
<td>HH</td>
<td>Haag Hall</td>
<td>5120 Rockhill</td>
</tr>
<tr>
<td>HSB</td>
<td>Health Sciences Building (Hospital Hill)</td>
<td>2220 Holmes</td>
</tr>
<tr>
<td>HSB</td>
<td>Health Sciences Building</td>
<td>TBA</td>
</tr>
<tr>
<td>KPB</td>
<td>Katz Pharmacy Building</td>
<td>5005 Rockhill</td>
</tr>
<tr>
<td>LAW</td>
<td>Law School</td>
<td>500 E. 52nd St.</td>
</tr>
<tr>
<td>MED</td>
<td>School of Medicine (Hospital Hill)</td>
<td>2411 Holmes</td>
</tr>
<tr>
<td>MNL</td>
<td>Miller Nichols Library</td>
<td>800 E. 51st St.</td>
</tr>
<tr>
<td>NH</td>
<td>Newcomb Hall</td>
<td>5123 Holmes</td>
</tr>
<tr>
<td>OMB</td>
<td>Old Maintenance Building</td>
<td>801 E. 51st St.</td>
</tr>
<tr>
<td>PAC</td>
<td>Performing Arts Center</td>
<td>4949 Cherry</td>
</tr>
<tr>
<td>RH</td>
<td>Royall Hall</td>
<td>800 E. 52nd St.</td>
</tr>
<tr>
<td>SASS</td>
<td>Student Academic Support Services</td>
<td>5014 Rockhill</td>
</tr>
<tr>
<td>SCB</td>
<td>Spencer Chemistry Building</td>
<td>5009 Rockhill</td>
</tr>
<tr>
<td>SH</td>
<td>Scofield Hall</td>
<td>711 E. 51st St.</td>
</tr>
<tr>
<td>SRC</td>
<td>Swinney Recreation Center (Sweh’ - nee)</td>
<td>5030 Holmes</td>
</tr>
<tr>
<td>4825T</td>
<td>4825 Troost Bldg.</td>
<td>4825 Troost Ave.</td>
</tr>
<tr>
<td>4747T</td>
<td>4747 Troost Bldg.</td>
<td>4747 Troost Ave.</td>
</tr>
<tr>
<td>UC</td>
<td>University Center</td>
<td>5000 Holmes</td>
</tr>
<tr>
<td>UH</td>
<td>University House</td>
<td>5101 Rockhill</td>
</tr>
</tbody>
</table>
Training available for personnel handling hazardous waste or working in Satellite Accumulation Areas.

Chemical Management Plan Training

Laboratory Safety Awareness for Custodial

Laboratory Safety Awareness for Police/Security

Laboratory Safety Awareness for Graduate Students

Contingency Plan Training for Emergency First Responders

Hazardous Waste Operations 8 hour Refresher